流体力学与飞行力学

曲外锥乘波体进气道实用构型设计和性能分析

  • 贺旭照 ,
  • 乐嘉陵
展开
  • 中国空气动力研究与发展中心 超高速空气动力学研究所/高超声速冲压发动机技术重点实验室, 绵阳 621000

收稿日期: 2016-08-22

  修回日期: 2016-11-04

  网络出版日期: 2016-12-21

基金资助

国家自然科学基金(51376192)

Design and performance analysis of practical curved cone waverider inlet

  • HE Xuzhao ,
  • LE Jialing
Expand
  • Laboratory of Science and Technology on Hypervelocity/Scramjet Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2016-08-22

  Revised date: 2016-11-04

  Online published: 2016-12-21

Supported by

National Natural Science Foundation of China (51376192)

摘要

介绍了新型曲外锥乘波前体进气道(CCWI)的一体化设计方法,设计了理论构型并验证了设计方法。在几何参数约束下,获得了隔离段矩形出口,考虑前缘钝度及展向切除的乘波前体进气道构型。基于验证的数值仿真工具及计算网格策略,分析了几何切除及钝度和黏性对一体化构型性能的影响。在来流马赫数为4.0和6.0,迎角(AoA)在-4°~8°范围内,对设计的乘波前体进气道的基本性能进行了雷诺平均Navier-Stokes数值仿真,结果表明,该乘波前体进气道具有较高的流量捕获和总压恢复特性,隔离段出口参数满足超燃冲压发动机入口需求。该新型乘波前体进气道一体化方案及研究结果为一体化曲外锥乘波飞行器及一体化乘波推进流道的研究奠定了技术基础。

本文引用格式

贺旭照 , 乐嘉陵 . 曲外锥乘波体进气道实用构型设计和性能分析[J]. 航空学报, 2017 , 38(6) : 120690 -120690 . DOI: 10.7527/S1000-6893.2016.0289

Abstract

The integration design method for the novel curved cone waverider forebody inlet (CCWI) is introduced, and a prototype CCWI is designed. The practical CCWI with rectangle exit isolator and leading edge bluntness is obtained under geometrical constrains. The cutting off and bluntness effects are evaluated using the validated numerical simulation tools. Reynolds average Navier-Stokes simulations are conducted at free stream Mach number Ma=4.0, 6.0, angle of attack (AoA) from -4° to 8°. The results show that the practical CCWI has high mass flow capture ratios and total pressure recovery at the simulation conditions. Its basic compression characteristics can meet the needs of scramjet combustors. The present study provides the possibilities for the integration study of CCWI with hypersonic vehicles and scramjet combustors.

参考文献

[1] RICHARD M, SCOTT M. X-51 development: A chief engineer's perspective view[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011: 13-17.
[2] KUCHEMANN D. The aerodynamic design of aircraft[M]. Oxford: Pergamon Press, 1978: 448-510.
[3] HEISER W H, PRATT D T. Hypersonic airbreathing propulsion[M]. Reston: AIAA Inc. Press, 1994: 32-33.
[4] HANEY J W, BEAULIEU W D. Waverider inlet integration issues: AIAA-1994-0383[R]. Reston: AIAA, 1994.
[5] BERENS T M,BISSINGER N C. Forebody precompression effects and inlet entry conditions for hypersonic vehicles[J]. Journal of Spacecraft and Rockets, 1998, 35(1): 30-36.
[6] BILLIG F S, BAURLE R A, TAM C J. Design and analysis of streamline traced hypersonic inlets: AIAA-1999-4974[R]. Reston: AIAA,1999.
[7] SMART M K. Design of three-dimensional hypersonic inlets with rectangular to elliptical shape transition[J]. Journal of Propulsion and Power, 1999, 15(3): 408-416.
[8] VIJAY S, ANDREW G, MARK S. Automated design optimization for the P2 and P8 hypersonic inlets[J]. Journal of Aircraft, 1997, 34(2): 308-316.
[9] MARY K L O, MARK J L. Optimized scramjet integration on a waverider[J]. Journal of Aircraft, 1992, 29(6): 1114-1123.
[10] TAKASHIMA N, LEWIS M J. Engine-airframe integration on osculating cone waverider-based vehicle designs: AIAA-1996-2551[R]. Reston: AIAA, 1996.
[11] O'BRIEN T F, MARK J L. Rocket-based combined-cycle engine integration on an osculating cone waverider vehicle[J]. Journal of Aircraft, 2001, 38(6): 1117-1123.
[12] SOBIECZKY H, DOUGHERTY F C, JONES K D. Hypersonic waverider design from given shock waves[C]//Proceedings of the 1st International Hypersonic Waverider Symposium. Washington, D.C.: NASA, 1990.
[13] RYAN P S, MARK J L. Design of an engine airframe integrated hypersonic missile within fixed box constraints: AIAA-1999-0509[R]. Reston: AIAA, 1999.
[14] YOU Y C, ZHU C X, GUO J L. Dual waverider concept for the integration of hypersonic inward-turning inlet and airframe forebody: AIAA-2009-7421[R]. Reston: AIAA, 2009.
[15] LI Y Q, AN P, PAN C J, et al. Integration methodology for waverider-derived hypersonic inlet and vehicle forebody: AIAA-2014-3229[R]. Reston: AIAA, 2014.
[16] 贺旭照, 周正, 倪鸿礼. 密切内锥乘波前体进气道一体化设计和性能分析[J]. 推进技术, 2012, 33(4): 510-515. HE X Z, ZHOU Z, NI H L. Integrated design methods and performance analyses of osculating inward turning cone waverider forebody inlet(OICWI)[J]. Journal of Propulsion Technology, 2012, 33(4): 510-515 (in Chinese).
[17] HE X Z,LE J L, ZHOU Z, et al. Osculating inward turning cone waverider/inlet (OICWI) design methods and experimental study: AIAA-2012-5810[R]. Reston: AIAA, 2012.
[18] 周正, 贺旭照, 卫锋, 等. 密切曲内锥乘波前体进气道低马赫数性能试验研究[J]. 推进技术, 2016, 37(8): 1455-1460. ZHOU Z, HE X Z, WEI F, et al. The experimental studies of osculating inward turning cone waveriderforebody inlet (OICWI) at low Mach number conditions[J]. Journal of Propulsion Technology, 2016, 37(8): 1455-1460 (in Chinese).
[19] ZUCROW M J, HOFFMAN J D. Gas dynamics Vol.2: Multidimensional flow[M]. New York: John Wiley and Sons, Inc. Press, 1977: 112-266.
[20] BERNBARD H A. Design of supersonic inlets by a computer program incorporating the method of characteristics: NASA TN D-4960[R]. Washington, D.C.: NASA, 1969.
[21] HE X Z, LE J L,WU Y C. Design of a curved cone derived waverider forebody: AIAA-2009-7423[R]. Reston: AIAA, 2009.
[22] TRENT T, DAVID V W. Performance analysis of hypersonic shape changing inlets derived from morphing streamline traced flowpaths: AIAA-2008-2635[R]. Reston: AIAA, 2008.
[23] HE X Z,ZHAO H Y,LE J L. Application of wall function boundary condition considering heat transfer and compressibility[J]. Acta Aerodynamic Sinica, 2006, 24(4): 1138-1144.
[24] 0.6米×0.6米跨声速风洞(FL-23)[EB/OL].[2016-08-22].http://www.cardc.cn/DevRead.Asp?Channelld=4&Classld=19&ld=7#. 0.6 m×0.6 m transonic wind tunnel (FL-23)[EB/OL]. [2016-08-22].http://www.cardc.cn/DevRead.Asp?Channelld=4&Classld=19&ld=7# (in Chinese).

文章导航

/