涡轮叶栅通道内颗粒物沉积过程的数值模拟
收稿日期: 2016-06-14
修回日期: 2016-08-15
网络出版日期: 2016-12-21
基金资助
国家自然科学基金委员会与中国民用航空局联合资助项目(U1633113);天津市应用基础与前沿技术研究计划(14JCQNJC06800);中央高校基本科研业务费(ZXH2012H004)
Numerical simulation of particle deposition process inside turbine cascade
Received date: 2016-06-14
Revised date: 2016-08-15
Online published: 2016-12-21
Supported by
Joint Funds of the National Natural Science Foundation of China and Civil Aviation Administration of China (U1633113);Tianjin Research Program of Application and Advanced Technology (14JCQNJC06800);the Fundamental Research Funds for the Central Universities (ZXH2012H004)
为了更加准确获得颗粒物在涡轮中的沉积分布,以某涡轮叶片为模型,选用最接近航空发动机内部颗粒组成的Jim Bridger Power Station(JBPS)颗粒为污染物,同时,利用C++编写合适的User Defined Function(UDF)经过调试来分析颗粒沉积后叶片边界的复杂变形和边界网格依赖于时间变化的重构生成,在考虑每个时间步长颗粒沉积在叶片上从而改变叶片几何特性和换热特性的情况下,来深入研究颗粒物沉积在叶片的整个过程,最终得出了沉积的分布情况,并且通过数值研究结果与实验结果的对比,验证了网格重构与融合程序的合理性、准确性。根据叶片变形情况预测腐蚀的发生情况。随后,改变主流温度、颗粒直径来研究颗粒沉积特性。结果表明:颗粒主要沉积在叶片压力面中部,但会使得叶片前缘和压力面中部均产生明显变形;叶片前缘由于颗粒沉积使得粗糙度增加形成锯齿形,最先遭受腐蚀;颗粒直径影响颗粒沉积的分布与沉积生长速度;只影响沉积速度,并不改变沉积分布。
杨晓军 , 祝佳雄 . 涡轮叶栅通道内颗粒物沉积过程的数值模拟[J]. 航空学报, 2017 , 38(5) : 120530 -120530 . DOI: 10.7527/S1000-6893.2016.0237
A numerical simulation is conducted to obtain more accurate distribution of particle deposition on turbine blade with Jim Bridger Power Station (JBPS). C++ is used to code suitable User Defined Function (UDF), which reconstructs grids to accomdate complex boundary deformation in every time step. In such a way that deposition can change geometry features and heat transfer characteristics, and the whole deposition process on blade can be analyzed and the exact deposition distrbution can be obtained. A fair comparison of numerical results with existing experimental results shows the rationality and accuracy of grid reconstruction code. On the basis of deposition distribution and geometry deformation of turbine blade, the erosion area on the blade is predicted. Thereafter, the effect of mainstream temperature and particle diameter is analyzed. The research results show that the main deposition occurs on the central area of blade pressure side, whereas there is obvious deformation in leading edge and central area. The obvious deformation reveals that roughness is increased and erosion is more severe on leading edge. The diameter of particle has important influence on particle deposition and deposition rate, whereas temperature of mainstream only has influence on deposition rate.
Key words: deposition; deformation; UDF; erosion; turbine blade; particle diameter; numerical simulation
[1] DONKELAAR A, MARTIN R, BRAUER M, et al. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth:Development and application[J]. Environmental Health Perspectives, 2010, 118(6):847-855.
[2] BRUN K, NORED M, KURZ R. Particle transport analysis of sand ingestion in gas turbine engines[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(1):012402.
[3] DUNN M G, PADOVA J, MOLLER J E, et al. Performance deterioration of a turbofan and a turbojet engine upon exposure to a dust environment[J]. Journal of Engineering for Gas Turbines and Power, 1987, 109(3):336-343.
[4] KIM J, DUNN M G, BARAN A J, et al. Deposition of volcanic materials in the hot sections of two gas turbine engines[J]. Journal of Engineering for Gas Turbines and Power, 1993, 115(3):641-651.
[5] SCHNEIDER O, DOHMEN H J, BENRA F K, et al. Investigations of dust separation in the internal cooling air system of gas turbines:GT-2003-38293[R]. New York:ASME, 2003.
[6] EKKAD S, HAN J C. Detailed heat transfer distributions on a cylindrical model with simulated TBC spallation:AIAA-1997-1595[R]. Reston:AIAA, 1997.
[7] DAVID G, KAREN A. Simulating particle deposition and mitigating deposition degradation effects in film cooled turbine sections:DE-FC21-92MC29061[R]. Washington, D.C.:UTSR, 2010.
[8] WRIGHT I G, LEVENS C, PINT B A. An analysis of the potential for deposition, erosion, or corrosion in gas turbines fueled by the products of biomass gasification or combustion:GT-2000-0019[R]. New York:ASME, 2000.
[9] AHLUWALIA R K, IM K H, WENGLARZ R A. Flyash adhesion in simulated coal-fired gas turbine environment[J]. Journal of Engineering for Gas Turbines and Power, 1989, 111(4):672-678.
[10] CROSBY J M, LEWIS S, BONS J P, et al. Effects of temperature and particle size on deposition in land based turbines[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(5):819-825.
[11] 王德全, 夏智勋, 胡建新, 等. 固冲发动机沉积数值模拟与试验研究[J]. 固体火箭技术, 2009, 32(1):38-42. WANG D Q, XIA Z X, HU J X, et al. Numerical simulation and experimental study of deposition for ducted rockets[J]. Journal of Solid Rocket Technology, 2009, 32(1):38-42 (in Chinese).
[12] 张大林, 陈维建. 飞机机翼表面霜状冰结冰过程的数值模拟[J]. 航空动力学报, 2004, 19(1):138-141. ZHANG D L, CHEN W J. Numerical simulation of the rime ice accretion process on airfoil[J]. Journal of Aerospace Power, 2004, 19(1):138-141 (in Chinese).
[13] 陈维建, 张大林. 飞机机翼结冰过程的数值模拟[J]. 航空动力学报, 2005, 20(6):1010-1017. CHEN W J, ZHANG D L. Numerical simulation of ice accretion on airfoils[J]. Journal of Aerospace Power, 2005, 20(6):1010-1017 (in Chinese).
[14] 孙志国, 朱程香, 付斌, 等. 结冰计算中翼面网格重构研究[J]. 航空学报, 2011, 32(2):231-241. SUN Z G, ZHU C X, FU B,et al. Research of grid reconstruction on wing surface for icing calculation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2):231-241 (in Chinese).
[15] TAFTI D K, SREEDHARAN S S. Composition dependent model for the prediction of syngas ash deposition with the application to a leading edge turbine vane, GT-20110-23655[C]//ASME Turbo Expo 2010:Power for Land, Sea, and Air. New York:ASME, 2010:615-626.
[16] SENIOR C J, SRINIVASACHAR S. Viscosity of ash particles in combustion systems for prediction of particle sticking[J]. Energy and Fuels, 1995, 9(2):277-283.
[17] N'DALA I, CAMBIER F, ANSEAU M R, et al. Viscosity of liquid feldspars. Part I:Viscosity measurements[J]. Transactions & Journal of the British Ceramic Society, 1984, 83(4):105-107.
[18] SHIH T I P, BAILEY R T. GRID2D/3-A computer program for generating grid systems in complex-shaped two-and three-dimensional spatial domains:NASA-TM-102453[R]. Washington, D.C.:NASA,1990.
[19] Allegheny Ludlum Corporation Company. Stainless steel types 309 and types 310[S]. Pittsburgh, PA:Allegheny Lulum Corporation Company, 2002.
[20] WEBB J B, CASSADAY B. Coal ash deposition on nozzle guide vanes:Part Ⅱ-Computational modeling[J]. Journal of Turbomachinery, 2011, 135(1):1757-1767.
/
〈 | 〉 |