固体燃料冲压发动机自持燃烧的影响因素
收稿日期: 2016-09-28
修回日期: 2016-10-25
网络出版日期: 2016-12-13
基金资助
总装备部预先研究项目(404040301)
Influencing factors for self-sustained combustion of solid fuel ramjet
Received date: 2016-09-28
Revised date: 2016-10-25
Online published: 2016-12-13
Supported by
General Armaments Department Pre-research Foundation (404040301)
采用试验和仿真方法,研究了固体燃料冲压发动机(SFRJ)自持燃烧的主要影响因素。研究结果表明:SFRJ内为典型的扩散火焰,化学反应特征时间与反应物停留特征时间的比值是影响发动机自持燃烧的关键参数,该值越小,扩散火焰越稳定;本文研究工况下,较小的后台阶高度即可保证发动机实现自持燃烧,后台阶稳定火焰的物理原因是在固体燃料表面附近形成一个低速区,保证了固体燃料的分解燃烧,当台阶高度为0时,由于化学反应特征时间与反应物停留特征时间的比值迅速增加,SFRJ无法自持燃烧;台阶高度较小时,点火过程会对SFRJ的稳定燃烧产生影响,SFRJ可能会出现熄火复燃现象。
巩伦昆 , 陈雄 , 李唯暄 , 杨海涛 , 周长省 . 固体燃料冲压发动机自持燃烧的影响因素[J]. 航空学报, 2017 , 38(7) : 120821 -120821 . DOI: 10.7527/S1000-6893.2016.0301
By simulation and test, the parameters which influence the self-sustained combustion of the solid fuel ramjet (SFRJ) are investigated. The results show that the combustion in SFRJ is diffusion-controlled, and the ratio of characteristic chemical reaction time to characteristic residence time is the critical parameter influencing the self-sustained combustion of ramjet. The smaller the ratio is, the more stable the flame will be. Under the conditions of the present research, a small step height can guarantee the self-sustained combustion of ramjet. The physical reason for the stabilization of combustion behind a backward-facing step is that existence of a low speed flow area near the solid fuel surface guarantees the pyrolysis and combustion of the solid fuel. When the step height is 0, the flame will go out as the ratio of characteristic chemical reaction time to characteristic residence time increases quickly. When the step height is small, the ignition process may have influence on stable combustion of the SFRJ, and reburning may occur after flameout.
[1] 鲍福廷, 黄熙君, 张振鹏, 等. 固体火箭冲压发动机[M]. 北京: 中国宇航出版社, 2006: 25-31. BAO F T, HUANG X J, ZHANG Z P, et al. Integral solid propellant ramjet rocket motor[M]. Beijing: China Astronautic Publishing House, 2006: 25-31 (in Chinese).
[2] ELANDS P J M, KORTING P G, WIJCHERS T, et al. Comparison of combustion experiments and theory in polyethylene solid fuel ramjets[J]. Journal of Propulsion and Power, 1990, 6(6): 732-739.
[3] FERREIRA J G, CARVALHO J A, SILVA M G. Experimental investigation of polyethylene combustion in a solid fuel ramjet: AIAA-1996-2698[R]. Reston: AIAA, 1996.
[4] ZVULONI R, LEVY Y, GANY A. Investigation of a small solid fuel ramjet combustor [J]. Journal of Propulsion and Power, 1989, 5(3): 269-275.
[5] 郭健. 固体燃料冲压发动机工作过程理论与试验研究[D]. 长沙: 国防科学技术大学, 2007: 42-70. GUO J. Theoretical and experimental investigation on the working process of solid fuel ramjet[D]. Changsha: National University of Defense Technology, 2007: 42-70 (in Chinese).
[6] 夏强. 固体燃料冲压发动机工作过程研究[D]. 南京: 南京理工大学, 2011: 82-112. XIA Q. Investigation on the working process of solid fuel ramjet[D]. Nanjing: Nanjing University of Science and Technology, 2011: 82-112 (in Chinese).
[7] 成红刚. 固体燃料冲压发动机燃烧性能数值仿真及试验研究[D]. 南京: 南京理工大学, 2013: 38-110. CHENG H G. Numerical simulation and experimental research on combustion characteristics of solid fuel ramjet[D]. Nanjing: Nanjing University of Science and Technology, 2013: 38-110 (in Chinese).
[8] 谢爱元, 武晓松. 外侧面燃烧固体燃料冲压发动机燃烧室流场的数值研究[J]. 推进技术, 2014, 35(7): 956-964. XIE A Y, WU X S. Numerical simulation on flow field of solid fuel ramjet combustion chamber with outboard burning[J]. Journal of Propulsion Technology, 2014, 35 (7):956-964 (in Chinese).
[9] 巩伦昆, 陈雄, 周长省, 等. 结构尺寸对固体燃料冲压发动机燃速影响的仿真研究[J]. 兵工学报, 2016, 37(5): 798-807. GONG L K, CHEN X, ZHOU C S, et al. Numerical investigation on the effect of solid fuel ramjet geometry on solid fuel regression rate[J]. Acta Armamentarii, 2016, 37(5): 798-807 (in Chinese).
[10] 巩伦昆, 陈雄, 周长省, 等. 来流条件对SFRJ燃速及自持燃烧性能的影响[J]. 航空学报, 2016, 37(5): 1428-1439. GONG L K, CHEN X, ZHOU C S, et al. Effect of inlet flow condition on regression rate and self-sustained combustion of solid fuel ramjet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5): 1428-1439 (in Chinese).
[11] SCHULTE G. Fuel regression and flame stabilization studies of solid-fuel ramjets[J]. Journal of Propulsion and Power, 1986, 2(4): 301-304.
[12] NETZER A, GANY A. Burning and flameholding characteristics of a miniature solid fuel ramjet combustor[J]. Propellants, Explosives, Pyrotechnics, 1991, 7(3): 357-363.
[13] ELANDS P, DIJSWIJK F, ZANDBERGEN B. Experimental and computational flammability limits in a solid fuel ramjet: AIAA-1990-1964[R]. Reston: AIAA, 1990.
[14] LIOU T M, LIEN W Y, HWANG P W. Flammability limits and probability density functions in simulated solid-fuel ramjet combustors[J]. Journal of Propulsion and Power, 1997, 13(5): 643-650.
[15] 朱国强. 固体燃料冲压发动机点火过程研究[D]. 南京: 南京理工大学, 2014: 79-111. ZHU G Q. The research on the ignition process of solid fuel ramjet[D]. Nanjing: Nanjing University of Science and Technology, 2014: 79-111 (in Chinese).
[16] STOLIAROV S I, WALTERS R N. Determination of the heats of gasification of polymers using differential scanning calorimetry[J]. Polymer Degradation and Stability, 2008, 93(2): 422-427.
[17] GASCOIN N, FAU G, GILLARD P. Flash pyrolysis of high density polyethylene: AIAA-2013-3833[R]. Reston: AIAA, 2013.
[18] BAURLE R A, MATHUR T, GRUBER M R, et al. A numerical and experimental investigation of a scramjet combustor for hypersonic missile applications: AIAA-1998-3521[R]. Reston: AIAA, 1998.
[19] ZHOU L X, CHEN X L, ZHENG C G, et al. Second-order moment turbulence-chemistry models for simulating NOx formation in gas combustion[J]. Fuel, 2000, 79(11): 1289-1301.
[20] MATSUOKA T, MURAKAMI S, NAGATA H. Transition characteristics of combustion modes for flame spread in solid fuel tube[J]. Combustion and Flame, 2012, 159(7): 2466-2473.
[21] MAGNUSSENA B F, HJERTAGERA B H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion[J]. Symposium on Combustion, 1977, 16(1): 719-729.
[22] WILCOX D C. Dilatation-dissipation corrections for advanced turbulence models[J]. AIAA Journal, 1992, 30(11): 2639-2646.
/
〈 | 〉 |