绕轴旋转圆柱结冰特性结冰风洞试验
收稿日期: 2016-08-23
修回日期: 2016-11-30
网络出版日期: 2016-12-13
基金资助
国家自然科学基金(51576037,11172314);国家“973”计划(2015CB755800)
An icing wind tunnel test on icing characteristics of cylinder rotating around a shaft
Received date: 2016-08-23
Revised date: 2016-11-30
Online published: 2016-12-13
Supported by
National Natural Science Foundation of China (51576037, 11172314); National Basic Research Program of China (2015CB755800)
绕轴旋转物体结冰是一种常见的结冰现象,如风力机叶片和直升机旋翼结冰等。针对该旋转模型的结冰问题,以绕轴旋转圆柱为对象,进行了结冰风洞试验研究。试验在自行设计的利用自然低温的结冰风洞系统中完成。在对结冰风洞试验能力进行验证后,对具有不同直径、转速和结冰时间的旋转圆柱结冰进行了试验,建立了旋转圆柱的结冰分析与评价方法,分析了转速、圆柱直径、结冰时间等对圆柱结冰形状主要特征量的影响规律,包括结冰面积、无因次结冰面积、驻点厚度、无因次驻点厚度、驻点偏转角、无因次结冰上下极限等,获得了旋转圆柱的结冰特性。在此基础上,通过回归正交试验设计,构建了旋转圆柱结冰的预测模型,并进行了验证与分析。研究结果可为绕轴旋转物体结冰特性研究提供参考和借鉴。
李岩 , 王绍龙 , 易贤 , 周志宏 , 郭龙 . 绕轴旋转圆柱结冰特性结冰风洞试验[J]. 航空学报, 2017 , 38(2) : 520693 -520703 . DOI: 10.7527/S1000-6893.2016.0314
Icing on the objects rotating around a shaft is a common phenomenon, such as icing on wind turbine blade and helicopter propeller. In order to investigate the icing characteristics of the rotating model, icing wind tunnel tests are carried out on the cylinder rotating around a shaft. Tests are performed in the icing wind tunnel system with natural low temperature in cold climate. The repeatability validation test is made for the icing on rotating cylinder. Icing tests are carried out on the rotating cylinder with different rotating speed, cylinder diameter and icing time. Analysis and evaluation methods for the icing characteristics of the rotating cylinder are established. The effects of these factors on the characteristics of icing shape on rotation cylinder are explored, including icing area, dimensionless ice area, stagnation thickness, dimensionless stagnation thickness, stagnation point deflection angle, and dimensionless icing upper and lower limits. The icing characteristics of the rotating cylinder are obtained. Based on the above research, the regression equations for calculating the icing characteristics of rotating cylinder are obtained through orthogonal experimental design method, and the prediction model for the rotating cylinder is developed. Comparison and verification analysis of the test and the prediction values are carried out. The research results can provide reference for the study of icing characteristics on the object rotating around a shaft.
[1] MAKKONEN L, LAAKSO T, MARJANIEMI M, et al. Modeling and prevention of ice accretion on wind turbine on wind turbines[J]. Wind Engineering, 2001, 25(1):3-21.
[2] 徐玉貌, 吕少杰, 曹义华, 等. 旋翼桨叶结冰对直升机飞行性能的影响[J]. 航空动力学报, 2016, 31(2):399-404. XU Y M, LÜ S J, CAO Y H, et al. Effects of rotor blade icing on helicopter flight performance[J]. Journal of Aerospace Power, 2016, 31(2):399-404(in Chinese).
[3] 任鹏飞, 徐宁, 宋娟娟, 等. 结冰对风力叶片影响数值的数值研究[J]. 工程热物理学报, 2015, 36(2):313-317. REN P F, XU N, SONG J J, et al. Numerical research on impact of icing on wind turbine blades[J]. Journal of Engineering Thermophysics, 2015, 36(2):313-317(in Chinese).
[4] 严晓雪, 朱春玲, 王正之.风力机冰脱落轨迹仿真研究[J]. 计算机仿真, 2015, 32(10):123-127. YAN X X, ZHU C L,WANG Z Z. Numerical simulation of ice shedding from wind turbine[J].Computer Simulation, 2015, 32(10):123-127(in Chinese).
[5] 李国之, 曹义华. 直升机旋翼结冰后的飞行品质[J]. 南京航空航天大学学报, 2011, 43(3):381-386. LI G Z, CAO Y H. Effects of rotor icing on flying qualities of helicopter[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(3):381-386(in Chinese).
[6] MILLER T L, KORKAN K D, SHAW R J. Analytical determination of propeller performance degradation due to ice accretion[J].Journal of Aircraft, 1987, 24(11):768-775.
[7] 陈科, 曹义华, 潘星. 改进的翼型积冰数值模拟方法[J]. 航空动力学报, 2007, 22(11):1814-1819. CHEN K, CAO Y H, PAN X. An improved numerical simulation method for airfoil ice accretion[J]. Journal of Aerospace Power, 2007, 22(11):1814-1819(in Chinese).
[8] 战培国. 国外寒冷地区风力机结冰问题研究[J]. 航空科学技术, 2016, 27(2):1-6. ZHAN P G. Review of the wind turbine icing in overseas cold regions[J]. Aeronautical Science & Technology, 2016, 27(2):1-6(in Chinese).
[9] RUFF G A, BERKOWITZ B M. Users manual for the NASA lewis ice accretion prediction code (LEWICE):NASA CR-185129[R]. Washington, D.C.:NASA, 1990.
[10] TAIKI M, MASAYA S, MAKOTO Y,et al. Numerical simulation of ice accretion phenomena on rotor blade of axial blower[J]. Journal of Thermal Science, 2012, 21(4):322-326.
[11] 易贤, 王开春, 马洪林, 等. 水平轴风力机结冰及其影响计算分析[J]. 太阳能学报, 2014, 35(6):1052-1058. YI X, WANG K C, MA H L, et al. Computation of icing and its effect of horizontal axis wind turbine[J]. Acta Energiae Solaris Sinica, 2014, 35(6):1052-1058(in Chinese).
[12] 易贤, 王开春, 马洪林, 等. 大型风力机结冰过程水滴收集率三维计算[J]. 空气动力学学报, 2013, 31(6):745-751. YI X, WANG K C, MA H L, et al. 3-D numerical simulation of droplet collection efficiency in large-scale wind turbine icing[J]. Acta Aerodynamica Sinica, 2013, 31(6):745-751(in Chinese).
[13] 李国之, 曹义华, 钟国. 旋翼结冰模型与纵列式直升机平衡特性分析[J]. 北京航空航天大学学报, 2010, 36(9):1034-1037. Li G Z, CAO Y H, ZHONG G. Rotor icing model and trim characteristics analysis for tandem helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(9):1034-1037(in Chinese).
[14] 陈希, 招启军, 赵国庆. 计入离心力影响的直升机旋翼翼型结冰数值模拟[J]. 航空动力学报, 2014, 29(9):2157-2165. CHEN X, ZHAO Q J, ZHAO G Q. Numerical simulation of ice accretion on rotor airfoil of helicopter considering effects of centrifugal force[J]. Journal of Aerospace Power, 2014, 29(9):2157-2165(in Chinese).
[15] HAN Y Q,PALACIOS J, SCHMITZ S. Scaled ice accretion experiments on a rotating wind turbine blade[J]. Journal of Wind Engineering and Industrial Aerodynamica, 2010, 109:55-67.
[16] 李岩, 王绍龙, 郑玉芳, 等. 利用自然低温的风力机结冰风洞试验系统设计[J]. 实验流体力学, 2016, 30(2):54-58, 66. LI Y, WANG S L, ZHENG Y F, et al. Design of wind tunnel experiment system for wind turbine icing by using natural low temperature[J]. Journal of Experiment in Fluid Mechanics, 2016, 30(2):54-58, 66(in Chinese).
[17] RUFF G A. Quantitative comparison of ice accretion shapes on airfoils[J]. Journal of Aircraft, 2002, 39(3):418-426.
[18] 周志宏, 易贤, 郭龙, 等. 基于云雾参数误差的结冰外形修正方法[J]. 实验流体力学, 2016, 30(3):8-13. ZHOU Z H, YI X, GUO L, et al. Ice shape correction method based on the error of cloud parameters[J]. Journal of Experiment in Fluid Mechanics, 2016, 30(3):8-13(in Chinese).
[19] BRAGG M B, GREGOREK G M. Aerodynamic characteristics of airfoils with ice accretions[C]//AIAA 20th Aerospace Sciences Meeting. Reston:AIAA, 1992.
[20] 李云雁, 胡传荣. 实验设计与数据处理[M]. 北京:化学工业出版社, 2005. LI Y Y, HU C R. Experimental design and date processing[M]. Beijing:Chemical Industry Press, 2005(in Chinese).
/
〈 | 〉 |