纳卫星变轨段质量矩姿态控制系统设计
收稿日期: 2016-09-12
修回日期: 2016-11-21
网络出版日期: 2016-11-27
基金资助
南京理工大学自主科研专项(30916011101)
Design of moving-mass attitude control system for nanosatellites in orbital transfer stage
Received date: 2016-09-12
Revised date: 2016-11-21
Online published: 2016-11-27
Supported by
The Scientific Research Project of NJUST (30916011101)
陆正亮 , 张翔 , 于永军 , 莫乾坤 , 廖文和 . 纳卫星变轨段质量矩姿态控制系统设计[J]. 航空学报, 2017 , 38(6) : 320778 -320778 . DOI: 10.7527/S1000-6893.2016.0306
A moving-mass control technology is proposed to stabilize the attitude of nanosatellites in orbital transfer stage. After the configuration of actuator masses is obtained, 8 DOF dynamic equations are derived based on momentum and moment of momentum theorem. According to the results of dynamic analysis, a simplified control model is developed. On this basis, a robust controller characterized by a global sliding mode is given to stabilize the yaw and pitch angle and to track the actuator position. The validation of this control system is simulated with the condition of parametric uncertainty. Results indicate that the two-dimensional mass moment control system could rapidly adjust the attitude and have a good robustness against disturbance. It is concluded that this system can be applied for attitude control in orbital transfer.
Key words: orbital transfer; nanosatellite; moving-mass; attitude control; sliding mode control
[1] RHEE M S, ZAKRZWSKI C M, THOMAS M A. Highlights of nanosatellite propulsion development program at NASA-Goddard Space Flight Center[C]//Proceedings of 14th Annual AIAA/USU Small Satellite Conference. Utah: Utah State University, 2000.
[2] 吕振铎. 轨道机动期间的姿态控制[J]. 中国空间科学技术, 1994(5): 25-30. LV Z D. Attitude control during orbit maneuver[J]. Chinese Space Science and Technology, 1994(5): 25-30 (in Chinese).
[3] 李雯, 肖凯. 变轨发动机工作态主动式自旋稳定姿态控制[J]. 宇航学报, 2004, 25(2): 231-234. LI W, XIAO K. Active attitude control for a spin-stabilized spacecraft while the orbit transform motor is working[J]. Journal of Astronautics, 2004, 25(2): 231-234 (in Chinese).
[4] 张钊, 胡军. 轨道机动时考虑延迟的卫星姿态稳定控制方法[J]. 宇航学报, 2011, 32(2): 290-296. ZHANG Z, HU J. Satellite attitude stabilization with time delay during orbital maneuver[J]. Journal of Astronautics, 2011, 32(2): 290-296 (in Chinese).
[5] 高长生, 李君龙, 荆武兴, 等. 导弹质量矩控制技术发展综述[J]. 宇航学报, 2010, 31(2): 307-314. GAO C S, LI J L, JING W X, et al. Key technique and development for moving mass actuated kinetic missile[J]. Journal of Astronautics, 2010, 31(2): 307-314 (in Chinese).
[6] WHITE J E, ROBINETT R D. Principal axis misalignment control for deconing of spinning spacecraft[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(4): 823-830.
[7] BYRNE R H, STURGIS B R, ROBINETT R D. A moving mass trim control system for reentry vehicle guidance: AIAA-1996-3438[R]. Reston: AIAA, 1996.
[8] REGAN F J, KAVETSKY R A. Add-on controller for reentry vehicles: U.S., Serial No.752766[P]. 1984.
[9] PETSOPOULOS, REGAN F J, BARLOW J. Moving mass control system for fixed-trim reentry vehicle[J]. Journal of Spacecraft Rockets, 1996, 33(1): 54-60.
[10] VADDI S S, MENON P K, SWERIDUK G D. Multi-stepping solution to linear two point boundary value problems in missile integrated control[C]//Proceedings of AIAA Guidance, Navigation and Control Conference. Reston: AIAA, 2005.
[11] VADDI S S, MENON P K, SWERIDUK G D. Multistepping approach to finite-interval missile integrated control[J]. Journal of Guidance, Control and Dynamics, 2006, 29(4): 1015-1019.
[12] MENON P K, SWERIDUK G D, OHLMEYER E J. Integrated guidance and control of moving-mass actuated kinetic warheads[J]. Journal of Guidance, Control and Dynamics, 2004, 27(1): 118-126.
[13] 周凤岐, 易彦, 周军. 克服旋转导弹螺旋运动的方法研究[J]. 宇航学报, 2001, 22(5): 77-81. ZHOU F Q, YI Y, ZHOU J. Research on overcoming the coning motion of rotary missile[J]. Journal of Astronautics, 2001, 22(5): 77-81 (in Chinese).
[14] 易彦, 周凤岐, 余松煜. 变质心控制导弹的稳定性分析与鲁棒控制[J]. 上海交通大学学报, 2003, 37(4): 570-573. YI Y, ZHOU F Q, YU S Y. Analysis on stability of variable centroid controlled missile and robust control[J]. Journal of Shanghai Jiaotong University, 2003, 37(4): 570-573 (in Chinese).
[15] 何珺, 周凤岐, 周军. 变质心控制导弹H∞综合LPV鲁棒自动驾驶仪的设计[J]. 西北工业大学学报, 2004, 22(3): 360-364. HE J, ZHOU F Q, ZHOU J. On using moving-mass-center H∞ control for simplifying design of LPV missile autopilot[J]. Journal of Northwestern Polytechnical University, 2004, 22(3): 360-364 (in Chinese).
[16] 高长生, 荆武兴, 于本水, 等. 质量矩导弹构型及自适应控制律设计[J]. 航空学报, 2010, 31(8): 1593-1599. GAO C S, JING W X, YU B S, et al. Configuration and adaptive control law design for a mass moment missile[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1593-1599 (in Chinese).
[17] 李瑞康, 荆武兴, 高长生, 等. 变质心飞行器姿态与弹道性能分析[J]. 宇航学报, 2009, 30(4): 1498-1503. LI R K, JING W X, GAO C S, et al. Performance analysis of attitude and ballistic for moving mass actuated vehicle[J]. Journal of Astronautics, 2009, 30(4): 1498-1503 (in Chinese).
[18] 魏鹏鑫, 高长生, 荆武兴. 基于稳定性分析的变质心再入飞行器布局参数设计[J]. 导弹与航天运载技术, 2012(1):34-39. WEI P X, GAO C S, JING W X. Research on the method of layout parameter design for moving mass actuated reentry vehicle based on stability analysis[J]. Missiles and Space Vehicles, 2012(1): 34-39 (in Chinese).
[19] YOUNG T A. Attitude dynamics and control of a spacecraft using shifting mass distribution[D]. Pennsylvania: The Pennsylvania State University, 2012.
[20] ATKINS B, HENDERSON T. Under-actuated moving mass attitude control for a 3U CuBeSat mission[C]//Proceedings of Spaceflight mechanics 2012. Charleston: American Astronautical Society, 2012: 2083-2094.
[21] KEVIN L Z, JERRY F, DARREN R, et al. CubeSat solid rocket motor propulsion systems providing delta-Vs greater than 500 m/s[C]//Proceedings of 28th Annual AIAA/USU Small Satellite Conference. Utah: Utah State University, 2014.
[22] 屠善澄. 卫星姿态动力学与控制(1)[M]. 北京: 中国宇航出版社, 1999: 49-73. TU S C. Satellite attitude dynamic and control(1)[M]. Beijing: China Astronautic Publishing House, 1999: 49-73 (in Chinese).
[23] 张晓宇, 贺有智, 王子才. 基于H∞性能指标的质量矩拦截弹鲁棒控制[J]. 航空学报, 2007, 28(3): 635-640. ZHANG X Y, HE Y Z, WANG Z C. Robust control of mass moment interception missile based on H∞ performance characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3): 635-640 (in Chinese).
/
〈 | 〉 |