基于IBC方法的旋翼BVI噪声主动控制机理
收稿日期: 2016-09-01
修回日期: 2016-09-21
网络出版日期: 2016-11-21
基金资助
国家自然科学基金(11572156);江苏高校优势学科建设工程资助项目
Active control mechanism of rotor BVI noise based on IBC method
Received date: 2016-09-01
Revised date: 2016-09-21
Online published: 2016-11-21
Supported by
National Natural Science Foundation of China (11572156);A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
为揭示单片桨叶控制(IBC)主动控制技术抑制旋翼桨-涡干扰(BVI)噪声的降噪机理,建立了一套基于CFD/CSD/FW-H_pds方程的综合噪声分析方法。旋翼桨-涡干扰噪声与旋翼桨叶载荷特性、气动变形以及旋翼桨尖涡结构等密切相关,为有效模拟旋翼桨叶的载荷特性及桨尖涡结构,将Navier-Stokes方程作为前飞流场的主控方程,空间离散上采用三阶MUSCL插值格式与通量差分裂Roe格式相结合;时间方向上采用双时间法,使用隐式LU-SGS格式在伪时间方向上进行推进;湍流模型采用对分离流动具有较好捕捉能力的Spalart-Allmaras模型。为提高旋翼桨叶弹性变形运动的模拟精度,建立了基于Hamilton变分原理的CSD模型,并与高精度的CFD求解器结合,发展了适合旋翼桨叶变形及载荷特性模拟的流固耦合分析方法。在CFD/CSD耦合方法分析流场基础上,使用可穿透空间积分面的FW-H_pds方法对旋翼气动噪声特性进行计算。首先,对流场及噪声数值方法进行验证;然后,着重针对UH-60A旋翼的斜下降飞行状态,分别对有/无IBC噪声主动控制条件下的旋翼BVI气动噪声特性进行了模拟,相位角、幅值和频率等不同控制参数的影响对比分析结果表明:IBC主动控制减小了前行侧桨叶表面尤其是桨叶尖部的负压峰值,降低了桨-涡干扰发生位置附近的桨叶气动载荷;同时主动控制后的桨尖涡集中程度变弱,并且增加了桨叶与桨尖涡之间的相遇距离,从而显著降低了桨-涡干扰噪声;选取合理的相位角、幅值和频率等主动控制参数组合,BVI噪声降低可达5~7 dB。
关键词: 旋翼; 桨-涡干扰(BVI)噪声; 噪声主动控制; Navier-Stokes方程; FW-H_pds方法; CFD/CSD耦合方法; 单片桨叶控制(IBC)
倪同兵 , 招启军 , 马砾 . 基于IBC方法的旋翼BVI噪声主动控制机理[J]. 航空学报, 2017 , 38(7) : 120744 -120744 . DOI: 10.7527/S1000-6893.2016.0284
A CFD/CSD/FW-H_pds coupling method is established to investigate the mechanism for rotor blade-vortex interaction (BVI) noise reduction based upon individual blade control (IBC) technique. The rotor aeroacoustics is closely related to the blade deformation, the airload characteristic and the blade-tip vortex structure. In order to simulate the blade airload characteristic and blade-tip vortex structure effectively and have better capture ability for separated flows, the Navier-Stokes equations with Spalart-Allmaras turbulence model are adopted as the governing equations for the forward flight flowfield. The third-order MUSCL interpolation scheme and flux-difference splitting Roe scheme are used in spatial discretization, and the dual-time stepping method is employed in temporal discretization while the implicit LU-SGS scheme is used to march in the pseudo time step. In order to improve the calculation accuracy of elastic deformation of blade, a CSD module is developed based on Hamilton's variational principles. Combined with high-accuracy CFD solver, a CFD/CSD coupling strategy is developed to adapt for elastic deformation and load characteristics simulation of blades. Based upon the simulated flowfield by CFD/CSD coupling method, calculations on aeroacoustic characteristics of the rotor are conducted based on the FW-H_pds equations with the penetrable integral surface. The numerical verifications of flowfield and noise analysis methods are first completed. The aeroacoustic characteristics of the UH-60A rotor in oblique descending flight are then calculated with and without IBC. Comparisons of the effects of different control parameters such as phase angle, amplitude and frequency on rotor aeroacoustic characteristics show that with IBC active control, the negative pressure peak of the blade surface (especially the blade-tip surface) in the advancing side decreases, resulting in decrease of the blade airloads where the BVI phenomenon occurs. In addition, with IBC, the blade-tip vortex concentration decreases, and the distance between the blade and the blade-tip vortex increases, resulting in significant reduction of the blade vortex interaction noise. The BVI noise can be reduced about 5-7 dB with reasonable parameter combination of phase angle, amplitude and frequency.
[1] YANG C, AOYAMA T, CHAE S. Blade planform optimization to reduce HSI noise of helicopter in hover[C]// 64th Annual Forum of the American Helicopter Society. Fairfax, VA: American Helicopter Society (AHS) International, Inc., 2008.
[2] JOHNSON C, BARAKOS G N. A framework for the optimization of a BERP-like blade[C]//51st AIAA Aerospace Science Meeting. Reston: AIAA, 2013.
[3] MEGAN S M. Helicopter blade-vortex interaction noise with comparisons to CFD calculations: NASA-TM-110423[R]. Washington,D.C.: NASA, 1996.
[4] YU Y H. Rotor blade-vortex interaction noise[J]. Progress in Aerospace Science, 2000, 36(2): 97-115.
[5] TANGLER J L, WOBLFELD R M, MILEY S J. An experimental investigation of vortex stability, tip shapes, compressibility and noise for hovering model rotors: NASA-CR-2305[R]. Washington, D.C.: NASA, 1973.
[6] 史勇杰,苏大成,徐国华. 桨叶气动外形对直升机桨-涡干扰噪声影响研究[J]. 南京航空航天大学学报, 2015, 47(2): 235-242. SHI Y J, SU D C, XU G H. Research on influence of shape parameters on blade-vortex interaction noise of helicopter rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 235-242 (in Chinese).
[7] POLYCHRONIADIS M, ACHACHE M. Higher harmonic control: Flight tests of an experimental system on SA349 research gazelle[C]//42nd Annual Forum of the American Helicopter Society, 1986.
[8] SPLETTSTOESSER W R, SCHULTZ K J, KUBE R, et al. A higher harmonic control test in the DNW to reduce impulsive BVI noise[J]. Journal of the American Helicopter Society, 1994, 39(4):3-13.
[9] SPLETTSTOESSER W R, KUBE R, WAGNER W, et al. Key results from a higher harmonic control aeroacoustic rotor test (HART) in the German-Dutch wind tunnel[J]. Journal of the American Helicopter Society, 1997, 42(1):58-78.
[10] NIESL G, SWANSON S M, JACKLIN S A, et al. Effect of individual blade control on noise radiation[C]//75th AGARD Fluid Dynamics Panel Meeting and Symposium on Aerodynamics and Aeroacoustics of Rotorcraft. Paris:AGARD, 1994.
[11] SWANSON S M, JACKLIN S A, BLAAS A, et al. Individual blade control effects on blade-vortex interaction noise[C]//50th Annual Forum of the American Helicopter Society. Fairfax, VA: American Helicopter Society (AHS) International, Inc., 1994.
[12] YEO H, ROMANDER E A, NORMAN T R. Investigation of rotor performance and loads of a UH-60A individual blade control system[J]. Journal of the American Helicopter Society, 2011, 56(4):1-18.
[13] SPLETTSTÖ ßER W R, SCHULTZ K J, VAN DER WALL B G, et al. Helicopter noise reduction by individual blade control (IBC)-selected flight test and simulation results[C]//RTO/AVT Symposium on Active Control Technology for Enhanced Performance Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles, 2000.
[14] 冯剑波, 陆洋, 徐锦法, 等. 旋翼桨涡干扰噪声开环桨距主动控制研究[J]. 航空学报, 2014, 35(11): 2901-2909. FENG J B, LU Y, XU J F, et al. Research on the effect of open-loop active blade-pitch control on rotor BVI noise alleviation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 2901-2909 (in Chinese).
[15] ROE P L. Approximate riemann solvers, parameters vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372.
[16] WANG B, ZHAO Q J, XU G H, et al. Numerical analysis on noise of rotor with unconventional blade tips based on CFD/Kirchhoff method[J]. Chinese Journal of Aeronautics, 2013, 26(3): 572-582.
[17] BLAZEK J. Computational fluid dynamics: Principles and applications[M]. Netherlands: Elsevier, 2001: 204-208.
[18] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows: AIAA-1992-0439[R]. Reston: AIAA, 1992.
[19] YUAN K A, FRIEDMANN P P. Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips: NASA-CR-4665[R]. Washington, D.C.: NASA, 1995.
[20] BRENTNER K S, FARASSAT F. Analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces[J]. AIAA Journal, 1998, 36(8): 1379-1386.
[21] POTSDAM M, YEO H, JOHNSON W. Rotor airloads prediction using loose aerodynamic/structural coupling[J]. Journal of Aircraft, 2004, 43(3): 732-742.
[22] YU Y H, TUNG C, GALLMAN J, et al. Aerodynamics and acoustics of rotor blade-vortex interactions[J]. Journal of Aircraft, 1995, 32(5): 970-977.
/
〈 | 〉 |