基于能量最优的敏捷遥感卫星在轨任务规划
收稿日期: 2016-07-28
修回日期: 2016-11-14
网络出版日期: 2016-11-21
基金资助
国家自然科学基金(61273081);黑龙江省博士后科研启动金(LBH-Q14054);中央高校基本科研业务费专项资金(HEUCFD1503)
Energy-optimal in orbit mission planning for agile remote sensing satellites
Received date: 2016-07-28
Revised date: 2016-11-14
Online published: 2016-11-21
Supported by
National Natural Science Foundation of China (61273081);Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province of China (LBH-Q14054);the Fundamental Research Funds for the Central Universities of China (HEUCFD1503)
针对敏捷遥感卫星对多个离散观测点在轨自主任务规划问题,在考虑姿态运动方程耦合性的基础上,将问题分解为空间资源调度问题和连续最优控制问题,进而提出了一种结合伪谱法和遗传算法的混合求解算法。该算法针对基于行商问题(TSP)模型建立的空间资源调度问题模型,选用二维编码结构对观测顺序和相对观测时间进行实数编码,并采用遗传算法求解观测序列和观测时间;针对判断观测时间可行性时涉及的时间最优控制问题、以及姿态转移过程中涉及的最小能量消耗问题,将其归结为连续最优控制问题,并基于Gauss伪谱协态变量映射定理,采用Gauss伪谱法进行求解。通过与基于单纯遗传算法的规划算法进行对比试验,本文所提出的基于伪谱法和遗传算法的混合求解策略针对目标问题,在典型工况下姿态转移过程中能量消耗降低60%。
赵琳 , 王硕 , 郝勇 , 刘源 . 基于能量最优的敏捷遥感卫星在轨任务规划[J]. 航空学报, 2017 , 38(6) : 320654 -320654 . DOI: 10.7527/S1000-6893.2016.0298
A new hybrid algorithm combining pseudospectral method and genetic algorithm is presented in this work to solve the in orbit autonomous mission planning problem for the agile remote sensing satellite at multiple discrete observation points. The problem is broken into space resource scheduling problem and continuous optimal control problem based on the coupling of attitude motion equations. This algorithm, according to the space resource scheduling model built based on the travelling salesman problem (TSP) model, encodes the observation sequence and the relative observation time by a two-dimensional real coding structure, and calculates the observation sequence and the observation time by the genetic algorithm. The time optimal control problem in judging the observation time feasibility and the minimal energy consumption in attitude maneuvering are considered as the continuous optimal control problem, which is then solved by Gauss pseudospectral method based on Gauss pseudospectral costate mapping theorem. A comparative simulation test is carried out for the simple genetic algorithm and the proposed algorithm. The simulation results show that the energy consumption obtained by the proposed algorithm is reduced by 60% compared with that obtained by the simple genetic algorithm under typical simulation conditions.
[1] 廉振宇, 谭跃进, 严珍珍. 敏捷卫星调度的时间约束推理方法[J]. 系统工程与电子技术, 2013, 35(6):1206-1211. LIAN Z Y, TAN Y J, YAN Z Z. Temporal reasoning technology for AEOS scheduling[J]. Systems Engineering and Electronics, 2013, 35(6): 1206-1211 (in Chinese).
[2] BEAUMET G, VERFAILLIE G, CHARMEAU M C. Feasibility of autonomous decision making on board an agile earth-observing satellite[J]. Computational Intelligence, 2011, 27(1): 123-139.
[3] XU R, CHEN H P, LIANG X L, et al. Priority-based constructive algorithms for scheduling agile earth observation satellites with total priority maximization[J]. Expert Systems with Applications, 2016, 51: 195-206.
[4] 贺仁杰, 高鹏, 白保存, 等. 成像卫星任务规划模型、算法及其应用[J]. 系统工程理论与实践, 2011, 31(3): 411-422. HE R J, GAO P, BAI B C, et al. Models, algorithms and applications to the mission planning system of imaging satellites[J]. Systems Engineering-Theory & Practice, 2011, 31(3): 411-422 (in Chinese).
[5] GABREL V, VANDERPOOTEN D. Enumeration and interactive selection of efficient paths in a multiple criteria graph for scheduling an earth observing satellite[J]. European Journal of Operational Research, 2002, 139(3): 533-542.
[6] GABREL V, MOULET A, MURAT C, et al. A new single model and derived algorithms for the satellite shot planning problem using graph theory concepts[J]. Annals of Operational Research, 1997, 69(1): 115-134.
[7] VASQUEZ M, HAO J K. A "logic-constrained" knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observing satellite[J]. Computational Optimization and Applications, 2001, 20(2): 137-157.
[8] BENSANA E, LEMAITRE M, VERFAILLIE G. Earth observation satellite management[J]. Constraints, 1999, 4(3): 293-299.
[9] LEMAITRE M, VERFAILLIE G, JOUHAUD F, et al. Selecting and scheduling observations of agile satellites[J]. Aerospace Science and Technology, 2002, 6(5): 367-381.
[10] VERFAILLIE G, LEMAITRE M, SCHIEX T. Russian doll search for solving constraint optimization problems[C]//Proceedings of the 13th National Conference on Artificial Intelligence. Palo Alto: AAAI, 1996: 181-187.
[11] 贺仁杰. 成像侦察卫星调度问题研究[D]. 长沙: 国防科学技术大学, 2004: 15-23. HE R J. Research on imaging reconnaissance satellite scheduling problem[D]. Changsha: National University of Defense Technology, 2004: 15-23 (in Chinese).
[12] XHAFA F, SUN J Z, BAROLLI A, et al. Genetic algorithms for satellite scheduling problems[J]. Mobile Information System, 2012, 8(4): 351-377.
[13] WOLFE W, SORENSEN S E. Three scheduling algorithms applied to earth observing systems domain[J]. Management Science, 2000, 46(1): 148-166.
[14] CORDEAU J-F, LAPORTE G. Maximizing the value of an Earth observation satellite orbit[J]. Journal of the Operational Research Society, 2005, 56(8): 962-968.
[15] 陈英武, 方炎申, 李菊芳, 等. 卫星任务调度问题的约束规划模型[J]. 国防科技大学学报, 2006, 28(5): 126-132. CHEN Y W, FANG Y S, LI J F, et al. Constraint programming model of satellite mission scheduling[J]. Journal of National University of Defense Technology, 2006, 28(5): 126-132 (in Chinese).
[16] SARKHEYLI A, BAGHERI A, GHORBANI-VAGHEI B, et al. Using an effective tabu search in interactive resource scheduling problem for LEO satellites missions[J]. Aerospace Science and Technology, 2013, 29(1): 287-295.
[17] WU G H, LIU J, MA M H, et al. A two-phase scheduling method with the consideration of task clustering for earth observing satellites[J]. Computers & Operations Research, 2013, 40(7): 1884-1894.
[18] 刘富钰, 崔培玲. 基于改进遗传算法的敏捷卫星姿态路径规划[J]. 电光与控制, 2012, 19(12): 23-33. LIU F Y, CUI P L. Attitude path planning for agile satellite based on improved genetic algorithm[J]. Electronics Optics & Control, 2012, 19(12): 23-33 (in Chinese).
[19] KUSUDA Y, TAKAHASHI M. Feedback control with nominal inputs for agile satellites using control moment gyros[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(4): 1209-1218.
[20] 张秋华, 孙松涛, 谌颖, 等. 时间固定的两航天器追逃策略及数值求解[J]. 宇航学报, 2014,35(5): 537-544. ZHANG Q H, SUN S T, CHEN Y, et al. Strategy and numerical solution of pursuit-evasion with fixed duration for two spacecraft[J]. Journal of Astronautics, 2014, 35(5): 537-544 (in Chinese).
[21] SPILLER D, ANSALONE L, CURTI F. Particle swarm optimization for time-optimal spacecraft reorientation with keep-out cones[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(2): 312-325.
[22] 刘刚, 李传江, 马广富, 等. 应用SGCMG的卫星姿态快速机动控制[J]. 航空学报, 2011, 32(10): 1905-1913. LIU G, LI C J, MA G F, et al. Time efficient controller design for satellite attitude maneuvers using SGCMG[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1905-1913 (in Chinese).
[23] LI J, XI X N. Time-optimal reorientation of the rigid spacecraft using a pseudospectral method integrated homotopic approach[J]. Optimal Control Application & Methods, 2015, 36(6): 889-918.
[24] 丰志伟, 张永合, 刘志超, 等. 基于路径规划的敏捷卫星姿态机动反馈控制方法[J]. 国防科技大学学报, 2013, 35(4):1-6. FENG Z W, ZHANG Y H, LIU Z C, et al. Feedback control method for attitude maneuver of agile satellite based on trajectory optimization[J]. Journal of National University of Defense Technology, 2013, 35(4): 1-6 (in Chinese).
[25] GUO T D, JIANG F H, BAOYIN H X, et al. Fuel optimal low thrust rendezvous with outer planets via gravity assist[J]. Science China Physics, Mechanics & Astronomy, 2011, 54(4): 756-769.
[26] GARG D, PATTERSON M A, FRANCOLIN C, et al. Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method[J]. Computational Optimization and Applications, 2011, 49(2): 335-358.
[27] 黄静. 三轴稳定航天器姿态最优控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2010: 15-16. HUANG J. Optimal attitude control for three-axis stabilized spacecrafts[D]. Harbin: Harbin Institute of Technology, 2010: 15-16 (in Chinese).
[28] TSIOTRAS P. Stabilization and optimality results for the attitude control problem[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(4): 772-779.
[29] LIN W, DELGADO-FRIAS J G, GAUSE D C, et al. Hybrid Newton-Raphson genetic algorithm for the travelling salesman problem[J]. Cybernetics and Systems, 1995, 26(4): 387-412.
[30] BENSON D A, HUNTINGTON G T, THORVALDSEN T P, et al. Direct trajectory optimization and costate estimation via an orthogonal collocation method[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1435-1440.
[31] 叶东. 敏捷卫星姿态快速机动与稳定控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 15-19. YE D. Research on fast maneuver and stabilization control for agile satellite[D]. Harbin: Harbin Institute of Technology, 2013: 15-19 (in Chinese).
[32] 呼卫军, 卢青, 常晶, 等. 特征趋势分区Gauss伪谱法解再入轨迹规划问题[J]. 航空学报, 2015, 36(10): 3338-3348. HU W J, LU Q, CHANG J, et al. Reentry trajectory planning method based on Gauss pseudospectral with character istics of trend partition[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10): 3338-3348 (in Chinese).
[33] 张煜, 张万鹏, 陈璟, 等. 基于Gauss伪谱法的UCAV对地攻击武器投放轨迹规划[J]. 航空学报, 2011, 32(7): 1240-1251. ZHNAG Y, ZHANG W P, CHEN J, et al. Air-to-ground weapon delivery trajectory planning for UCAVs using Gauss pseudospectral method[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1240-1251 (in Chinese).
[34] 白瑞光, 孙鑫, 陈秋双, 等. 基于Gauss伪谱法的对UAV协同航迹规划[J]. 宇航学报, 2014, 35(9): 1022-1029. BAI R G, SUN X, CHEN Q S, et al. Multiple UAV cooperative trajectory planning based on Gauss pseudospectral method[J]. Journal of Astronautics, 2014, 35(9): 1022-1029 (in Chinese).
[35] GUO T D, JIANG F H, LI J F. Homotopic approach and pseudospectral method applied jointly to low thrust trajectory optimization[J]. Acta Astronautica, 2012, 71: 38-50.
[36] PATTERSON M A, RAO A V. GPOPS-Ⅱ: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive gaussian quadrature collocation methods and sparse nonlinear programming[J]. ACM Transactions on Mathematical Software, 2014, 41(1): 1-37.
[37] RAJA R, DUTTA A, VENKATESH K S. New potential field method for rough terrain path planning using genetic algorithm for a 6-wheel rover[J]. Robotics and Autonomous Systems, 2015, 72: 295-306.
/
〈 | 〉 |