流体力学与飞行力学

基于超静定配平的机动载荷控制风洞试验

  • 曾宪昂 ,
  • 蒲利东 ,
  • 李俊杰 ,
  • 谭申刚 ,
  • 谢怀强
展开
  • 1. 中航工业第一飞机设计研究院 强度设计研究所, 西安 710089;
    2. 中航工业第一飞机设计研究院 总师办, 西安 710089

收稿日期: 2016-07-07

  修回日期: 2016-10-29

  网络出版日期: 2016-11-21

基金资助

国家科技部国际合作专项(2013DFA80710)

Wind-tunnel test of maneuver load control based overdetermined trim

  • ZENG Xian'ang ,
  • PU Lidong ,
  • LI Junjie ,
  • TAN Shen'gang ,
  • XIE Huaiqiang
Expand
  • 1. Aircraft Strength Design and Research Department, AVIC The First Aircraft Institute, Xi'an 710089, China;
    2. The Chief Designer Office, AVIC The First Aircraft Institute, Xi'an 710089, China

Received date: 2016-07-07

  Revised date: 2016-10-29

  Online published: 2016-11-21

Supported by

International Cooperation Project of Ministry of Science and Technology of China (2013DFA80710)

摘要

介绍了俯仰机动载荷减缓(MLA)在某运输类飞机缩比风洞试验模型上的应用,旨在通过风洞试验研究一种基于超静定配平原理的机动载荷控制方法。首先,对模型飞机纵向超静定配平方法进行了研究并从理论上揭示通过其减缓机动载荷的基本原理;然后,依据超静定配平原理设计了MLA控制律,通过反馈模型飞机等效过载驱动副翼偏转减小机翼载荷,同时偏转升降舵来保持飞机的俯仰机动性能;最后,依次实施了超静定配平试验,气动伺服弹性稳定性试验以及机动载荷减缓试验,分别用以确定MLA控制律参数,检查控制系统稳定性以及获取俯仰机动时的系统响应。试验结果表明:在MLA控制律作用下,机翼根部弯矩增量比MLA控制律关闭时减小了10%以上,而模型飞机的俯仰机动性能基本保持不变;MLA控制律的加入使控制增稳系统稳定性略有下降;通过超静定配平试验确定MLA控制参数的方法有效提升了MLA控制律设计可靠性,使翼根弯矩减缓量接近目标值。研究工作为运输类飞机的机动载荷控制设计与试验提供了一种可行途径。

本文引用格式

曾宪昂 , 蒲利东 , 李俊杰 , 谭申刚 , 谢怀强 . 基于超静定配平的机动载荷控制风洞试验[J]. 航空学报, 2017 , 38(5) : 120596 -120596 . DOI: 10.7527/S1000-6893.2016.0282

Abstract

Pitching maneuver load alleviation (MLA) is demonstrated on the scale-down wind-tunnel test model of a generic transport aircraft. The objective of the research is to develop an approach for maneuver load control based on overdetermined trim theory via wind-tunnel test. The longitudinal overdetermined trim method for the test model is studied and the fundamental of alleviating the maneuver load by this method is revealed theoretically. The MLA control law is then designed based on the overdetermined trim theory, which utilizes equivalent normal acceleration feedback to deflect aileron and elevator to alleviate wing load and maintain pitch maneuver performance of the test model respectively. The overdetermined trim experiment, aeroservoelastic stability experiment as well as the maneuver load alleviation experiment are implemented in sequence to determine the MLA control law parameters, check the stability of the control system and obtain the system response during pitching maneuver, respectively. The experiment results indicate:when MLA control law functions, the incremental wing root bending moment decreases by more than 10%, compared with that without MLA control law; while the pitch maneuver performance remains almost unchanged; introduction of the MLA control law results in slight decrease of stability of the control augmentation system; the approach of determining MLA control parameters by overdetermined trim experiment effectively improves the reliability of MLA control design, making the amount of reduced wing root bending moment close to the target value. This investigation can provide a feasible approach for MLA control design and test of generic transport aircrafts.

参考文献

[1] XU J, KROO I. Aircraft design with maneuver and gust load alleviation:AIAA-2011-3180[R]. Reston:AIAA, 2011.
[2] XU J, KROO I. Aircraft design with active load alleviation and natural laminar flow[J]. Journal of Aircraft, 2014, 51(5):1532-1545.
[3] 朱阳贞, 吴志刚, 杨超. 弹性飞机纵向机动响应与载荷控制[J]. 飞机工程, 2010(4):40-44. ZHU Y Z, WU Z G, YANG C. Longitudinal maneuver response and loads control of aeroelastic airplanes[J]. Aircraft Engineering, 2010(4):40-44 (in Chinese).
[4] 吴森堂, 费玉华. 飞行控制系统[M]. 北京:北京航空航天大学出版社, 2005:346-350. WU S T, FEI Y H. Flight control system[M]. Beijing:Beihang University Press, 2005:346-350 (in Chinese).
[5] MCKENZIE J R. B-52 control configured vehicles ride control analysis and flight test:AIAA-1973-782[R]. Reston:AIAA, 1973.
[6] DISNEY T E. C-5A active load alleviation system[J]. Journal of Spacecraft, 1977, 14(2):81-86.
[7] HARGROVE W J. The C-5A active lift distribution control system:NASA-TM-X3409[R]. Washington, D.C.:NASA, 1976.
[8] Boeing Commercial Airplane Company. Integrated application of active controls technology to an advanced subsonic transport project-initial act configuration design study:NASA-CR-159249[R]. Washington, D.C.:NASA, 1980.
[9] 徐军, 陈微, 王荣梅, 等. 平飞时飞机机动载荷控制系统的分析和设计[J]. 飞行力学, 2009, 27(5):25-28. XU J, CHEN W, WANG R M, et al. Analysis and design of maneuvering load control system during aircraft level flight[J]. Flight Dynamics, 2009, 27(5):25-28 (in Chinese).
[10] 王星亮, 孙富春, 张友安. 基于模糊逻辑的弹性飞机机动载荷主动控制[J]. 计算机工程与设计, 2012, 33(1):336-340. WANG X L, SUN F C, ZHANG Y A. Active maneuver load control of flexible aircraft based on fuzzy logic[J]. Computer Engineering and Design, 2012, 33(1):336-340 (in Chinese).
[11] WOODS-VEDELER J A, POTOTZKY A S, HOADLEY S T. Rolling maneuver load alleviation using active controls[J]. Journal of Aircraft, 1995, 32(1):68-76.
[12] MILLER G D. Active flexible wing(AFW) technology:AFWAL-TR-87-3096[R]. Los Angeles:Air Force, 1988.
[13] THORNTON S V. Reduction of structural loads using maneuver load control on the advanced fighter technology integration(AFTI)/F-111 mission adaptive wing:NASA-TM-4526[R]. Washington, D.C.:NASA, 1993.
[14] 唐皓, 赵永辉, 黄锐. 刚弹耦合飞行器的机动载荷减缓[J]. 航空计算技术, 2012, 42(3):33-37. TANG H, ZHAO Y H, HUANG R. Maneuver loads alleviation for an aircraft considering rigid-elastic coupling effect[J]. Aeronautical Computing Technique, 2012, 42(3):33-37 (in Chinese).
[15] 宋磊, 孙富春, 张友安, 等. 基于控制分配的飞翼式飞机机动载荷控制研究[J]. 系统仿真学报, 2010, 22(7):1777-1781. SONG L, SUN F C, ZHANG Y A, et al. Research on maneuver load control used to fly-wing aircrafts based on control allocation[J]. Journal of System Simulation, 2010, 22(7):1777-1781 (in Chinese).
[16] ZINK P S, MAVRIS D N, RAVEH D E. Maneuver trim optimization techniques for active aeroelastic wings[J]. Journal of Aircraft, 2001, 38(6):1139-1146.
[17] RAVEH D E. Maneuver load analysis of overdetermined trim system[J]. Journal of Aircraft, 2008, 45(1):119-129.
[18] 肖志鹏, 万志强, 杨超. 三翼面飞机前翼和平尾机动载荷优化配置[J]. 航空学报, 2009, 30(2):276-282. XIAO Z P, WAN Z Q, YANG C. Maneuver load optimal distribution between canard and horizontal tail of three-surface aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2):276-282 (in Chinese).
[19] 赵永辉. 气动弹性力学与控制[M]. 北京:科学出版社, 2007:263-266. ZHAO Y H. Aeroelasticity and control[M]. Beijing:Science Press, 2007:263-266 (in Chinese).
[20] RODDEN W P. 气动弹性力学理论与计算[M]. 万志强, 吴志刚, 谢长川, 等译. 北京:航空工业出版社, 2014:200-206. RODDEN W P. Theoretical computational aeroelasticity[M]. WAN Z Q, WU Z G, XIE C C, et al translated. Beijing:Aviation Industry Press, 2014:200-206 (in Chinese).
[21] STEVENS B L, LEWIS F L. Aircraft control and simulation[M]. 2nd ed. New Jersey:Wiley & Sons, Inc, 2003:316-320.
[22] 孟泽, 孙合敏, 董礼. 线性调频信号仿真及其特性分析[J]. 舰船电子工程, 2009, 29(8):114-117. MENG Z, SUN H M, DONG L. Characteristic analysis and simulation of LFM signal[J]. Ship Electronic Engineering, 2009, 29(8):114-117 (in Chinese).

文章导航

/