固体力学与飞行器总体设计

基于ANCF的松弛绳索动力学建模与仿真

  • 张越 ,
  • 魏承 ,
  • 赵阳 ,
  • 谭春林 ,
  • 徐大富
展开
  • 1. 哈尔滨工业大学 航天工程系, 哈尔滨 150001;
    2. 北京空间飞行器总体设计部, 北京 100086;
    3. 上海宇航系统工程研究所, 上海 201108

收稿日期: 2016-07-05

  修回日期: 2016-10-28

  网络出版日期: 2016-11-14

基金资助

国家“973”计划(2013CB733004);上海市优秀学科带头人计划(14XD1423300)

Dynamic modeling and simulation of slack rope based on ANCF

  • ANCF ZHANG Yue ,
  • WEI Cheng ,
  • ZHAO Yang ,
  • TAN Chunlin ,
  • XU Dafu
Expand
  • 1. Department of Aerospace Engineering, Harbin Institute of Technology, Harbin 150001, China;
    2. Institute of Spacecraft System Engineering CAST, Beijing 100086, China;
    3. Shanghai Institute of Aerospace Systems Engineering, Shanghai 201108, China

Received date: 2016-07-05

  Revised date: 2016-10-28

  Online published: 2016-11-14

Supported by

National Basic Research Program of China (2013CB733004); Program of Shanghai Subject Chief Scientist (14XD1423300)

摘要

传统绝对节点坐标方法(ANCF)绳索模型是基于梁单元建立的,其不能反映纤维绳索的不可抗压和松弛特性。考虑纤维绳索初始松弛余量,给出了绳索非线性轴向应力-应变关系。绳索在松弛状态下轴向力接近于零,在张紧状态下表现出线弹性特性。在此基础上,采用绝对节点坐标方法推导了松弛绳索动力学模型。通过静力学和动力学仿真,将传统绳索模型和松弛绳索模型进行对比,结果表明:在重力及不同集中载荷作用下,松弛绳索相比于传统绳索都具有更大的变形;分析移除集中载荷后绳索的动力学响应可知,传统绳索在振动过程中始终处于张紧状态,且绳索上各点振动同步,而松弛绳索会在张紧和松弛状态之间不断转换,绳索上各点的振动存在相位差,能够更好地反映绳索在松弛状态下的动力学特性。

本文引用格式

张越 , 魏承 , 赵阳 , 谭春林 , 徐大富 . 基于ANCF的松弛绳索动力学建模与仿真[J]. 航空学报, 2017 , 38(4) : 220586 -220586 . DOI: 10.7527/S1000-6893.2016.0281

Abstract

Traditional absolute nodal coordinate formulation (ANCF) rope model is built based on beam element, and cannot reflect the incompressible and slack properties of fiber ropes. Considering the initial slackness of fiber ropes, the nonlinear axial stress-strain relationship of the rope is presented. The axial force of the rope is close to zero in the slack state, while the rope shows linear elastic property in the tense state. On this basis, the dynamic model of the slack rope is derived by applying ANCF. The traditional rope model and slack rope model are compared with each other through static and dynamic simulations, and the results indicate that compared with the traditional rope, the slack rope has greater deformation under gravity and different concentrated loads. According to the dynamic response of the rope after removal of the concentrated load, it is found that the traditional rope is always in tense state in the vibration process and the vibration of each point is synchronous; however, the slack rope keeps shifting in tense and slack states and there exists phase difference between each point, which can better reflect the dynamic characteristics of the rope in the slack state.

参考文献

[1] 金栋平, 文浩, 胡海岩. 绳索系统的建模、动力学和控制[J]. 力学进展, 2004, 34(3):304-313. JIN D P, WEN H, HU H Y. Modeling, dynamics and control of cable systems[J]. Advances in Mechanics, 2004, 34(3):304-313 (in Chinese).
[2] 周鲁豫. UHMWPE纤维绳索的编织工艺和力学性能研究[D]. 青岛:青岛大学, 2013:1-10. ZHOU L Y. Study on the knitting process and mechanical properties of UHMWPE fiber rope[D]. Qingdao:Qing-dao University, 2013:1-10 (in Chinese).
[3] KAMMAN J W, HUSTON R L. Multibody dynamics modeling of variable length cable systems[J]. Multibody System Dynamics, 2001, 5(3):211-221.
[4] 陈钦. 空间绳网系统设计与动力学研究[D]. 长沙:国防科学技术大学, 2010:48-49. CHEN Q. Design and dynamics of an orbital net-capture system[D]. Changsha:National University of Defense Technology, 2010:48-49 (in Chinese).
[5] HU X Z, LIU S J. Numerical simulation of deepwater deployment for offshore structures with deploying cables[J]. Journal of Central South University, 2015, 22(3):922-930.
[6] CONNELLY J D, HUSTON R L. The dynamics of flexible multibody systems:A finite segment approach-I. Theoretical aspects[J]. Computers & Structures, 1994, 50(2):255-258.
[7] CONNELLY J D, HUSTON R L. The dynamics of flexible multibody systems:A finite segment approach-Ⅱ. Example problems[J]. Computers & Structures, 1994, 50(2):259-262.
[8] 潘冬, 张越, 魏承, 等. 空间大型末端执行器绳索捕获动力学建模与仿真[J]. 振动与冲击, 2015, 34(1):74-79. PAN D, ZHANG Y, WEI C, et al. Dynamic modeling and simulation on rope capturing by space large end effector[J]. Journal of Vibration and Shock, 2015, 34(1):74-79 (in Chinese).
[9] SHABANA A A. An absolute nodal coordinate formulation for the large rotation and large deformation analysis of flexible bodies[D]. Chicago:University of Illinois, 1996.
[10] SHABANA A A. Definition of ANCF finite elements[J]. Journal of Computational and Nonlinear Dynamics, 2015, 10(5):054506.
[11] 田强. 基于绝对节点坐标方法的柔性多体系统动力学研究与应用[D]. 武汉:华中科技大学, 2009:2-7. TIAN Q. Flexible multibody dynamics research and application based on the absolute nodal coordinate method[D]. Wuhan:Huazhong University of Science and Technology, 2009:2-7 (in Chinese).
[12] TANG J L, REN G X, ZHU W D, et al. Dynamics of variable-length tethers with application to tethered satellite deployment[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(8):3411-3424.
[13] 于洋, 宝音贺西, 李俊峰. 空间飞网抛射展开动力学建模与仿真[J]. 宇航学报, 2010, 31(5):1289-1296. YU Y, BAOYIN H X, LI J F. Modeling and simulation of projecting deployment dynamics of space webs[J]. Journal of Astronautics, 2010, 31(5):1289-1296 (in Chinese).
[14] 张江. 空间绳网捕获过程碰撞动力学研究[D]. 哈尔滨:哈尔滨工业大学, 2015:19-31. ZHANG J. Contact dynamics of space net on capturing target[D]. Harbin:Harbin Institute of Technology, 2015:19-31 (in Chinese).
[15] ZHANG Y, WEI C, PAN D, et al. A dynamical approach to space capturing procedure using flexible cables[J]. Aircraft Engineering and Aerospace Technology, 2016, 88(1):53-65.
[16] LEE J H, PARK T W. Development of a three-dimensional catenary model using cable elements based on absolute nodal coordinate formulation[J]. Journal of Mechanical Science and Technology, 2012, 26(12):3933-3941.
[17] TUR M, GARCÍA E, BAEZA L, et al. A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary[J]. Engineering Structures, 2014, 71(1):234-243.
[18] SHABANA A A, YAKOUB R Y. Three dimensional absolute nodal coordinate formulation for beam elements:Theory[J]. Journal of Mechanical Design, 2001, 123(4):606-613.
[19] YAKOUB R Y, SHABANA A A. Three dimensional absolute nodal coordinate formulation for beam elements:Implementation and applications[J]. Journal of Mechanical Design, 2001, 123(4):614-621.
[20] GERSTMAYR J, SHABANA A A. Analysis of thin beams and cables using the absolute nodal co-ordinate formulation[J]. Nonlinear Dynamics, 2006, 45(1-2):109-130.
[21] FUJⅡ F, NOGUCHI H, ODA K. Flexible and incompressive goal nets in soccer[M]. Dordrecht:Springer, 2006:1903-1909.
[22] FUJIWARA J, SEGAWA S, ODA K, et al. Static loading tests and a computational model of a flexible net[C]//Extended Abstracts of International Symposium on New Olympics New Shell and Spatial Structures. Madrid:The International Association for Shell and Spatial Structure, 2006.
[23] 于洋, 宝音贺西, 李俊峰. 空间绳索系统的动力学建模方法[C]//北京力学会第十六届学术年会论文集. 北京:北京力学会, 2010. YU Y, BAOYIN H X, LI J F. Dynamic modeling method of space tether system[C]//16th Academic Annual Conference of Beijing Society of Theoretical and Applied Mechanics. Beijing:Beijing Society of Theoretical and Applied Mechanics, 2010 (in Chinese).
[24] GARCÍD-VALLEJO D, VALVERDE J, DOMÍNGUEZ J. An internal damping model for the absolute nodal coordinate formulation[J]. Nonlinear Dynamics, 2005, 42(4):347-369.
[25] SHABANA A A. Computational continuum mechanics[M]. Cambridge:Cambridge University Press, 2011:240-248.

文章导航

/