飞机结冰致灾与防护专栏

飞机结冰热力学行为研究综述

  • 杜雁霞 ,
  • 李明 ,
  • 桂业伟 ,
  • 王梓旭
展开
  • 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000

收稿日期: 2016-08-26

  修回日期: 2016-10-25

  网络出版日期: 2016-11-08

基金资助

国家自然科学基金(11672322,11472295);国家“973”计划(2015CB755800)

Review of thermodynamic behaviors in aircraft icing process

  • DU Yanxia ,
  • LI Ming ,
  • GUI Yewei ,
  • WANG Zixu
Expand
  • State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2016-08-26

  Revised date: 2016-10-25

  Online published: 2016-11-08

Supported by

National Natural Science Foundation of China (11672322,11472295); National Basic Research Program of China (2015CB755800)

摘要

热力学现象是制约飞机结冰特性的重要现象之一。开展飞机结冰过程热力学行为的研究旨在深入把握结冰过程的规律特征,从而为建立科学有效的结冰防护手段、保障结冰条件下的飞行安全奠定基础。本文回顾和介绍了飞机结冰热力学研究所涉及的过冷水滴存在的物理机制、结冰热力学条件、形核与晶体生长、耦合液/固相变的复合传热传质特性,以及热力学效应作用下的结冰物理特性等相关领域的研究进展及发展现状,并基于国外相关研究的发展趋势,提出了中国未来飞机结冰热力学研究需重点关注的方向。

本文引用格式

杜雁霞 , 李明 , 桂业伟 , 王梓旭 . 飞机结冰热力学行为研究综述[J]. 航空学报, 2017 , 38(2) : 520706 -520717 . DOI: 10.7527/S1000-6893.2016.0277

Abstract

Thermodynamic phenomenon is an important phenomenon in aircraft in-flight icing process. Research on the thermodynamic behavior of aircraft icing will be beneficial for an accurate understanding of the freezing characteristic and physical mechanism of icing process, and will thus lay the foundation for the development of effective means for anti-icing and de-icing to ensure flight safety in icing conditions. For over half a century, researchers have been aimed at lessening the hazards of aircraft in-flight icing. The current research and development in thermodynamic behavior of aircraft icing, including the physical mechanism of supercooling of water, thermodynamic conditions of icing, nucleation and crystal growth, and coupled liquid/solid phase transition of complex heat and mass transfer characteristics are reviewed, and the outlook and future efforts for research on thermodynamic behavior of icing is presented.

参考文献

[1] LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Science, 2001, 37(8):669-767.
[2] KIND R J, POTAPCZUK M G, FEO A C, et al. Experimental and computational simulation of in-flight icing phenomena[J]. Progress in Aerospace Science, 1998, 34(5-6):257-345.
[3] OLSEN W, WALKER E. Experimental evidence for modifying the current physical model for ice accretion on aircraft surfaces:NASA TM-87184[R]. Washington, D.C.:NASA, 1986.
[4] BILANIN A J. Proposed modifications to ice accretion icing scaling theory[J]. Journal of Aircraft, 1991, 28(6):353-359.
[5] IQBAL N, VAN DIJK N H, VERHOEVEN V W J, et al. Experimental study of ordering kinetics in aluminum alloys during solidification[J]. Acta Materialia, 2003, 51(15):4497-4504.
[6] MALKIN T L, MURRAY B J, BRUKHNO A, et al. Structure of ice crystallized from supercooled water:stacking disordered ice[J]. Proceedings of the National Academy of Sciences, 2012, 109(4):1041-1045.
[7] ELLEN N, JACCO M H, EDWIN W, et al. Aircraft icing in flight:effects of impact of supercooled large droplets[C]//29th Congress of the Aeronautical Sciences, 2014.
[8] JEZIORNY A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC[J]. Polymer, 1978, 19(10):1142-1144.
[9] LIU M, ZHAO Q, WANG Y, et al. Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212[J]. Polymer, 2003, 44(8):2537-2545.
[10] ELLIOTT J W, SMITH F T. Ice formation on a smooth or rough cold surface due to the impact of a supercooled water droplet[J]. Journal of Engineering Mathematics, 2015:1-30.
[11] DEBENEDETTI P G. Supercooled and glassy water[J]. Journal of Physics:Condensed Matter, 2003, 15(45):1669-1679.
[12] KOSTINSKI A, CANTRELL W. Entropic aspects of supercooled droplet freezing[J]. Journal of the Atmospheric Sciences, 2008, 65(9):2961-2971.
[13] BLAKE J, THOMPSONY D, STROBLZ T, et al. Effects of surface characteristics and droplet diameter on the freezing of supercooled water droplets impacting a cooled substrate[C]//6th AIAA Atmospheric and Space Environments Conference, 2014:2328.
[14] BLAKE J, THOMPSON D, RAPS D, et al. Simulating the freezing of supercooled water droplets impacting a cooled substrate[J]. AIAA Journal, 2015, 53(7):1725-1739.
[15] DE GENNES P G. Wetting:statics and dynamics[J]. Reviews of Modern Physics, 1985, 57(3):827-863.
[16] RIOBOO R, MARENGO M, TROPEA C. Time evolution of liquid drop impact onto solid, dry surfaces[J]. Experiments in Fluids, 2002, 33(1):112-124.
[17] BURTNETT E. Volume of fluid simulations for droplet impact on dry and wetted hydrophobic and superhydrophobic surfaces[D]. Mississippi:Mississippi State University, 2012.
[18] ALEXIADES V, SOLOMON A D. Mathematical modeling of melting and freezing processes[M]. Washington, D. C.:Hemisphere, 1993.
[19] KNIGHT C A, FLETCHER N H. The freezing of supercooled liquids[J]. American Journal of Physics, 1968, 36(5):466-467.
[20] FUMOTO K, KAWANAMI T. Study on freezing characteristics of supercooled water droplets impacting on solid surfaces[J]. Journal of Adhesion Science and Technology, 2012, 26(4-5):463-472.
[21] KING W D. Freezing rates of water droplets[J]. Journal of the Atmospheric Sciences, 1975, 32(2):403-408.
[22] TABAKOVA S, FEUILLEBOIS F, RADEV S. Freezing of a suspended supercooled droplet with a heat transfer mixed condition on its outer surface[C]//1st International Conference on Applications of Mathematics in Technical and Natural Sciences, 2009, 1186(1):240-247.
[23] MISHCHENKO L, HATTON B, BAHADUR V, et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets[J]. ACS Nano, 2010, 4(12):7699-7707.
[24] FEUILLEBOIS F, LASEK A, CREISMEAS P, et al. Freezing of a subcooled liquid droplet[J]. Journal of Colloid and Interface Science, 1995, 169(1):90-102.
[25] CHALMERS B. Principles of solidication[M]. 1977.
[26] JUNG S, DORRESTIJN M, RAPS D, et al. Are superhydrophobic surfaces best for icephobicity?[J]. Langmuir, 2011, 27(6):3059-3066.
[27] 裘燮纲, 韩凤华. 飞机防冰系统[M]. 1985. QIU X G, HAN F H. Aircraft anti-icing system[M]. 1985(in Chinese).
[28] POTAPCZUK M G, BIDWELL C S. Numerical simulation of ice growth on a MS-317 swept wing geometry:NASA TM-103705[R]. Washington, D. C.:NASA, 1991.
[29] 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳:中国空气动力研究与发展中心, 2007. YI X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang:China Aerodynamics Research and Development Center, 2007(in Chinese).
[30] SCHETNIKOV A, MATIUNIN V, CHERNOV V. Conical shape of frozen water droplets[J]. American Journal of Physics, 2015, 83(1):36-38.
[31] MARIN A G, ENRIQUEZ O R, BRUNET P, et al. Universality of tip singularity formation in freezing water drops[J]. Physical Review Letters, 2014, 113(5):054301.
[32] JIN Z Y, SUI D Y, YANG Z G. The impact, freezing, and melting processes of a water droplet on an inclined cold surface[J]. International Journal of Heat and Mass Transfer, 2015, 90:439-453.
[33] MORITA K, TANAKA M, KIMURA S, et al. Stationary and dynamic-icing processes of supercooled-water droplet on icephobic coating[C]//5th AIAA Atmospheric and Space Environments Conference, 2013.
[34] LUPI L, HUDAIT A, MOLINERO V. Heterogeneous nucleation of ice on carbon surfaces[J]. Journal of the American Chemical Society, 2014, 136(8):3156-3164.
[35] MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of airspeed[J]. Journal of the Aeronautical Sciences, 1953, 20(1):29-42.
[36] 张大林, 杨曦, 昂海松. 过冷水滴撞击结冰表面的数值模拟[J]. 航空动力学报, 2003, 18(1):87-91. ZHANG D L, YANG X, ANG H S. Numerical simulation of supercooled water droplets impingement on icing surfaces[J]. Journal of Aerospace Power, 2003, 18(1):87-91(in Chinese).
[37] MYERS T G. An extension to the Messinger model for aircraft icing[J]. AIAA Journal, 2001, 39(2):211-218.
[38] MYERS T G, CHARPIN J P F, CHAPMAN S J. The flow and solidification of a thin fluid film on an arbitrary three dimensional surface[J]. Physics of Fluids, 2002, 14(8):2788-2803.
[39] MYERS T G, CHARPIN J P F, THOMPSON C P. Slowly accreting glaze ice due to supercooled water impacting on a cold surface[J]. Physics of Fluids, 2002, 14(1):240-256.
[40] MYERS T G, CHARPIN J P F. A mathematical model for atmospheric ice accretion and water flow on a cold surface[J]. International Journal of Heat and Mass Transfer, 2004, 47(25):5483-5500.
[41] CHARPIN J P F. Water flow on accreting ice surfaces[D]. Cranfield:Cranfield University, 2002.
[42] PATRICK V. An automatic multi-stepping approach for aircraft ice prediction[D]. Cranfield:Cranfield University, 2007.
[43] ROTHMAYER A P. Scaling laws for water and ice layers on airfoils[C]//41th AIAA Aerospace Sciences Meeting, 2003.
[44] ISAAC G A, COBER S G, KOROLEV A V, et al. Canada freezing drizzle experiment[C]//41th AIAA Aerospace Sciences Meeting, 1999.
[45] BRAGG M B. Aircraft aerodynamic effects due to large droplet ice accretions:AIAA-1996-0932[R]. Reston:AIAA, 1996.
[46] COBER S G, ISAAC G A, STRAPP J W. Characterizations of aircraft icing environments that include supercooled large drops[J]. Journal of Applied Meteorology, 2011, 40(4):1984-2002.
[47] RICHARD J K. Assessment of importance of water-film parameters for scaling of glaze icing:AIAA-2001-0835[R]. Reston:AIAA, 2001.
[48] KERHO M F, BRAGG M B. Airfoil boundary-layer development and transition with large leading-edge roughness[J]. AIAA Journal, 1997, 35(1):24-31.
[49] WRIGHT W B, POTAPCZUK M G. Semi-empirical modeling of SLD physics[C]//42nd Aerospace Sciences Meeting and Exhibit, 2004.
[50] HONSEK R, HABASHI W G. Eulerian modeling of in-flight icing due to supercooled large droplets[J]. Journal of Aircraft, 2008, 45(4):1290-1296.
[51] KIND M, GILL W N, ANANTH R. The growth of ice dendrites under mixed convection conditions[J]. Chemical Engineering Communications, 1987, 55:295-312.
[52] KAREV A R, FARZANEH M, LOZOWSKI E P. Character and stability of a wind-driven supercooled water film on an icing surface-I. Laminar heat transfer[J]. International Journal of Thermal Sciences, 2003, 42(5):481-498.
[53] KAREV A R, FARZANEH M, LOZOWSKI E P. Character and stability of a wind-driven supercooled water film on an icing surface-II. Transition and turbulent heat transfer[J]. International Journal of Thermal Sciences, 2003, 42(5):499-511.
[54] SHIBKOV A A, GOLOVIN Y I, ZHELTOV M A, et al. Morphology diagram of non-equilibrium patterns of ice crystals growing in supercooled water[J]. Physica A:Statistical Mechanics and its Applications, 2003, 319:65-79.
[55] TANAKA M, KATUAKI M, KIMURA S, et al. Time-resolved temperature distribution of icing process of supercooled water in microscopic scale[C]//6th AIAA Atmospheric and Space Environments Conference, 2014.
[56] TANAKA M, KATUAKI M, YAMAMOTO M, et al. Freezing behavior of a supercooled water droplet impacting on surface using Dual-Luminescent imaging technique[C]//APS Meeting Abstracts, 2015.
[57] BRASLAVSKY I, LIPSON S G. Interferometric measurement of the temperature field in the vicinity of ice crystals growing from supercooled water[J]. Journal of Physics A:Statistical Mechanics and its Applications, 1998, 249(1):190-195.
[58] SANZ E, VEGA C, ESPINOSA J R, et al. Homogeneous ice nucleation at moderate supercooling from molecular simulation[J]. Journal of the American Chemical Society, 2013, 135(40):15008-15017.
[59] MATSUMOTO M, SAITO S, OHMINE I. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing[J]. Nature, 2002, 416(6879):409-413.
[60] NISTOR R A, MARKLAND T E, BERNE B J. Interface-limited growth of heterogeneously nucleated Ice in supercooled water[J]. The Journal of Physical Chemistry B, 2014, 118(3):752-760.
[61] HAMMOND D, QUERO M, IVEY P, et al. Analysis and experimental aspects of the impact of supercooled water droplets into thin water films[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005.
[62] WHALEN E A, BROEREN A P, BRAGG M B. Aerodynamics of scaled runback ice accretions[J]. Journal of Aircraft, 2008, 45(3):591-603.
[63] IULIANO E, MINGIONE G, PETROSINO F. Eulerian modeling of large droplet physics toward realistic aircraft icing simulation[J]. Journal of Aircraft, 2011, 48(5):1621-1632.
[64] LI H, ROISMAN I V, TROPEA C. Experiments and modelling of splash[R]. 2012.
[65] WORSTER M G. Solidification of fluids[J]. Perspectives in Fluid Dynamics, 2000, 742:393-446.
[66] LANGER J S, MULLER-KRUMBHAAR H. Theory of dendritic growth[J]. Acta Metallurgica, 1978, 26(11):1681-1687.
[67] 侯硕, 曹义华. 基于润滑理论的二维积冰数值模拟[J]. 北京航空航天大学学报, 2014, 40(10):1442-1450. HOU S, CAO Y H. Numerical simulation of two dim ensional ice accretion based on lubrication theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(10):1442-1450(in Chinese).
[68] DU Y X, STEPHAN E B, GUI Y W, et al. Heat and mass transfer study of supercooled large droplet icing[C]//2015 International Conference on Fluid Mechanics, Heat Transfer and Thermodynamics, 2015.
[69] PARASCHIVOIU I, SAEED F. Aircraft icing[M]. New York:John Wiley & Sons, INC, 2004.
[70] VARGAS M, RESHOTKO E. LWC and temperature effects on ice accretion formation on swept wings at glaze ice conditions[C]//38th Aerospace Sciences Meeting, 2000.
[71] 杜雁霞, 桂业伟, 柯鹏, 等. 飞机结冰冰型微结构特征的分形研究[J]. 航空动力学报, 2011, 26(5):997-1002. DU Y X, GUI Y W, KE P, et al. Investigation on the ice-type microstructure characteristics of aircraft icing based on the fractal theories[J]. Journal of Aerospace Power, 2011, 26(5):997-1002(in Chinese).
[72] 李伟斌, 易贤, 杜雁霞, 等. 基于变分分割模型的结冰形测量方法[J]. 航空学报, 2017, 38(1):120167. LI W B, YI X, DU Y X, et al. A measurement approach for ice shape based on variational segmentation model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):120167(in Chinese).
[73] SZILDER K, LOZOWSKI E P. Three-dimensional modelling of ice accretion density[J]. Quarterly Journal of the Royal Meteorological Society, 2000, 126(568):2395-2404.
[74] LIBBRECHT K G. The physics of snow crystals[J]. Reports on Progress in Physics, 2005, 68(4):855-895.
[75] MOORE E B, DE LA LLAVE E, WELKE K, et al. Freezing, melting and structure of ice in a hydrophilic nanopore[J]. Physical Chemistry Chemical Physics, 2010, 12(16):4124-4134.
[76] 杜雁霞. 飞机结冰的相变机理及传热特性研究[D]. 绵阳:中国空气动力研究与发展中心, 2009. DU Y X. Phase change and heat transfer mechanisms of aircraft icing[D]. Mianyang:China Aerodynamics Research and Development Center, 2009(in Chinese).
[77] 周志宏, 易贤, 桂业伟, 等. 考虑水滴动力学效应的结冰试验相似准则[J]. 实验流体力学, 2016, 30(20):20-25. ZHOU Z H, YI X, GUI Y W, et al. Icing scaling law with the dynamic effects of water droplets[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(20):20-25(in Chinese).
[78] KONG W L, LIU H. Development and theoretical analysis of an aircraft supercooled icing model[J]. Journal of Aircraft, 2014, 51(3):975-986.
[79] 吴佩佩, 朱春玲, 刘文平, 等. 过冷大水滴条件下机翼结冰数值仿真[J]. 计算机仿真, 2014, 31(9):51-55. WU P P, ZHU C L, LIU W P, et al. Numerical simulation of aircraft icing under supercooled large droplet conditions[J]. Computer Simulation, 2014, 31(9):51-55(in Chinese).
[80] 王超, 常士楠, 吴孟龙, 等. 过冷大水滴飞溅特性数值分析[J]. 航空学报, 2014, 35(4):1004-1011. WANG C, CHANG S N, WU M L, et al. Numerical investigation of splashing characteristics in super-cooled large droplet regime[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4):1004-1011(in Chinese).
[81] 杨胜华, 林贵平. 机翼结冰过程的数值模拟[J]. 航空动力学报, 2011, 26(2):323-330. YANG S H, LIN G P. Numerical simulation of ice accretion on airfoils[J]. Journal of Aerospace Power, 2011, 26(2):323-330(in Chinese).
[82] 王桥. 过冷大水滴动力学特性的温度影响实验研究[D]. 绵阳:中国空气动力研究与发展中心, 2015. WANG Q. Experimental study on the temperature effect of the dynamic characteristics of the supercooled large droplet[D]. Mianyang:China Aerodynamics Research and Development Center, 2015(in Chinese).
[83] 杜雁霞, 桂业伟, 肖春华, 等. 溢流条件下飞机结冰过程的传热特性研究[J]. 航空动力学报, 2009, 24(9):1966-1971. DU Y X, GUI Y W, XIAO C H, et al. Investigation of heat transfer characteristics of aircraft icing under runback water[J]. Journal of Aerospace Power, 2009, 24(9):1966-1971(in Chinese).
[84] BAI J Q, LI X, HUA J, et al. Ice accretion simulation in supercooled large droplets regime[J]. Acta Aerodynamica Sinica, 2013, 31(6):801-811.
[85] 屈亮, 李颖晖, 袁国强, 等. 基于相平面法的结冰飞机纵向非线性稳定域分析[J]. 航空学报, 2016, 37(3):865-872. QU L, LI Y H, YUAN G Q, et al. Longitudinal nonlinear stabilizing region for icing aircraft based on phase-plane method[J]. Acta Aeronautica et Astronautica, 2016, 37(3):865-872(in Chinese).
[86] BELCASTRO C M, FOSTER J V. Aircraft loss-of-control accident analysis[C]//Proceedings of AIAA Guidance, Navigation and Control Conference, 2010.
[87] ADDY JR H E, VERES J P. An overview of NASA engine ice-crystal icing research:NASA TM-217254[R]. Washington, D. C.:NASA, 2011.
[88] MASON J G, STRAPP J W, CHOW P. The ice particle threat to engines in flight[C]//44th AIAA Aerospace Sciences Meeting, 2006.
[89] LEROY D, FONTAINE E, SCHWARZENBOECK A, et al. HAIC/HIWC field campaign-investigating ice microphysics in high ice water content regions of mesoscale convective systems[C]//EGU General Assembly Conference Abstracts, 2015.
[90] STRUK P M, BROEREN A P, TSAO J C, et al. Fundamental ice crystal accretion physics studies:NASA TM-217429[R]. Washington, D. C.:NASA, 2012.
[91] KNEZEVICI D C, FULEKI D, CURRIE T, et al. Particle size effects on ice crystal accretion[C]//4th AIAA Atmospheric and Space Environments Conference, 2012.
[92] JORGENSON P C E, VERES J P, COENNEN R. Modeling of commercial turbofan engine with ice crystal ingestion:follow-on[C]//6th Atmospheric and Space Environments Conference, 2014.
[93] WRIGHT W B, JORGENSON P C E, VERES J P. Mixed phase modeling in GlennICE with application to engine icing[C]//AIAA Atmospheric and Space Environments Conference, 2010.ct-ing a cooled substrate[C]//6th AIAA Atmospheric and Space Environments Conference, 2014: 2328.
[15] BLAKE J, THOMPSON D, RAPS D, et al. Simulating the freezing of supercooled water droplets impacting a cooled substrate[J]. AIAA Journal, 2015, 53(7): 1725-1739.
[16] DE Gennes P G. Wetting: statics and dynamics[J]. Reviews of modern physics, 1985, 57(3): 827.
[17] RIOBOO R, MARENGO M, TROPEA C. Time evolution of liquid drop impact onto solid, dry sur-faces[J]. Experiments in Fluids, 2002, 33(1): 112-124.
[18] BURTNETT E. Volume of fluid simulations for droplet impact on dry and wetted hydrophobic and superhydrophobic surfaces[D]. Mississippi: Missis-sippi State University, 2012.
[19] ALEXIADES V, SOLOMON A D. Mathematical modeling of melting and freezing processes[M]. Washington: Hemisphere, 1993.
[20] KNIGHT C A, FLETCHER N H. The freezing of supercooled liquids[J]. American Journal of Phys-ics, 1968, 36(5): 466-467.
[21] FUMOTO K, KAWANAMI T. Study on freezing characteristics of supercooled water droplets impact-ing on solid surfaces[J]. Journal of Adhesion Science and Technology, 2012, 26(4-5): 463-472.
[22] KING W D. Freezing rates of water droplets[J]. Journal of the Atmospheric Sciences, 1975, 32(2): 403-408.
[23] TABAKOVA S, FEUILLEBOIS F, RADEV S. Freezing of a suspended supercooled droplet with a heat transfer mixed condition on its outer sur-face[C]//1st International Conference on Applications of Mathematics in Technical and Natural Sciences, AIP Publishing, 2009, 1186(1): 240-247.
[24] MISHCHENKO L, HATTON B, BAHADUR V, et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets[J]. ACS Nano, 2010, 4(12): 7699-7707.
[25] FEUILLEBOIS F, LASEK A, CREISMEAS P, et al. Freezing of a subcooled liquid droplet[J]. Journal of Colloid and Interface Science, 1995, 169(1): 90-102.
[26] CHALMERS B. Principles of solidication[M]. Krieger Pub Co, 1977.
[27] JUNG S, DORRESTIJN M, RAPS D, et al. Are superhydrophobic surfaces best for icephobicity?[J]. Langmuir, 2011, 27(6): 3059-3066.
[28] 裘燮纲, 韩凤华. 飞机防冰系统[M]. 北京: 航空专业教材编审室, 1985.
QIU X G, HAN F H. Aircraft anti-icing system[M]. Beijing, 1985. (in Chinese)
[29] POTAPCZUK M G, BIDWELL, C S. Numerical simulation of ice growth on a MS-317 swept wing ge-ometry[J]. NASA TM-103705, 1991.
[30] 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心, 2007.
YI X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang: China Aerodynamics Research and Development Center, 2007. (in Chinese)
[31] BRASLAVSKY I, LIPSON S G. Interferometric measurement of the temperature field in the vicinity of ice crystals growing from supercooled water[J]. Journal of Physics A: Statistical Mechanics and its Applications, 1998, 249(1): 190-195.
[32] MARIN A G, ENRIQUEZ O R, Brunet P, et al. Universality of Tip Singularity Formation in Freezing Water Drops[J]. Physical Review Letters, 2014, 113, 054301.
[33] JIN Z Y, SUI D Y, YANG Z G. The impact, freezing, and melting processes of a water droplet on an inclined cold surface[J]. International Journal of Heat and Mass Transfer, 2015, 90: 439-453.
[34] LI X H, Zhang X X, Chen M. Estimation of viscous dissipation in nanodroplet impact and spread-ing[J]. Physics of Fluids, 2015, 27(05): 052007.
[35] LUPI L, HUDAIT A, MOLINERO V. Heteroge-neous nucleation of ice on carbon surfaces[J]. Jour-nal of the American Chemical Society, 2014, 136(8): 3156-3164.
[36] MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of airspeed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42.
[37] 张大林, 杨曦, 昂海松. 过冷水滴撞击结冰表面的数值模拟[J]. 航空动力学报. 2003, 18(1): 87-91.
ZHANG D L, YANG X, ANG H S. Numerical simula-tion of supercooled water droplets impingement on icing surfaces[J]. Journal of Aerospace Power, 2003, 18(1): 87-91. (in Chinese)
[38] MYERS T G. An extension to the Messinger model for aircraft icing[J]. AIAA Journal, 2001, 39(2): 211-218.
[39] MYERS T G, CHARPIN J P F, CHAPMAN S J. The flow and solidification of a thin fluid film on an arbi-trary three dimensional surface[J], Physics of Fluids, 2002, 14 (8): 2788-2803.
[40] MYERS T G, CHARPIN J P F, THOMPSON C P. Slowly accreting glaze ice due to supercooled water impacting on a cold surface[J], Physics of Fluids, 2002, 14 (1): 240–256.
[41] MYERS T G, CHARPIN J P F. A mathematical model for atmospheric ice accretion and water flow on a cold surface[J]. International Journal of Heat and Mass Transfer, 2004, 47 (25): 5483-5500.
[42] CHARPIN J P F. Water flow on accreting ice surfac-es[D]. UK: Cranfield University, 2002.
[43] PATRICK V. An automatic multi-stepping ap-proach for aircraft ice prediction[D]. UK: Cranfield University, 2007.
[44] ROTHMAYER A P. Scaling laws for water and ice layers on airfoils[C]//41th AIAA Aerospace Sci-ences Meeting, 2003.
[45] ISAAC G A, COBER S G, KOROLEV A V, et al. Canada freezing drizzle experiment[C]//41th AIAA Aerospace Sciences Meeting, 1999.
[46] BRAGG M B. Aircraft aerodynamic effects due to large droplet ice accretions [J]. AIAA paper, 1996, 932.
[47] COBER S G, ISAAC G A, STRAPP J W. Charac-terizations of aircraft icing environments that include supercooled large drops[J]. Journal of Applied Mete-orology, 2011, 40(4): 1984-2002.
[48] RICHARD J K. Assessment of importance of water-film parameters for scaling of glaze icing [J]. AIAA Paper 2001, 835.
[49] KERHO M F, BRAGG M B. Airfoil boundary-layer development and transition with large leading-edge roughness[J]. AIAA Journal , 1997, 35(1): 24-31.
[50] WRIGHT W B, POTAPCZUK M G. Semi-empirical modeling of SLD physics[C]//42nd Aero-space Sciences Meeting and Exhibit, Reno, NV, Unit-ed States, 2004.
[51] HONSEK R, HABASHI W G. Eulerian modeling of in-flight icing due to supercooled large droplets[J]. Journal of Aircraft, 2008, 45(4): 1290-1296.
[52] KIND M, GILL W N, ANANTH R. The growth of ice dendrites under mixed convection conditions[J]. Chemical Engineering Communications, 1987, 55: 295-312.
[53] KAREV A R, FARZANEH M, LOZOWSKI E P. Character and stability of a wind-driven supercooled water film on an icing surface-I. Laminar heat trans-fer[J]. International Journal of Thermal Sciences, 2003, 42: 481-498.
[54] KAREV A R, FARZANEH M, LOZOWSKI E P. Character and stability of a wind-driven supercooled water film on an icing surface-II. Transition and tur-bulent heat transfer[J]. International Journal of Ther-mal Sciences, 2003, 42: 499-511.
[55] SHIBKOV A A, GOLOVIN Y I, ZHELTOV M A, et al. Morphology diagram of non-equilibrium pat-terns of ice crystals growing in supercooled water[J]. Physica A: Statistical Mechanics and its Applica-tions, 2003, 319: 65-79.
[56] TANAKA M, KATUAKI M, KIMURA S, et al. Time-resolved temperature distribution of icing pro-cess of supercooled water in microscopic scale[C]//6th AIAA Atmospheric and Space Environ-ments Conference, 2014: 2329.
[57] TANAKA M, KATUAKI M, YAMAMOTO M, et al. Freezing behavior of a supercooled water droplet Impacting on Surface Using Dual-Luminescent imag-ing technique[J]. Bulletin of the American Physical Society, 2015, 60.
[58] MORITA K, TANAKA M, Kimura S, et al. Sta-tionary and dynamic-icing processes of supercooled-water droplet on icephobic coating [C]//5th AIAA Atmospheric and Space Environments Conference, 2013: 2549.
[59] SANZ E, VEGA C, ESPINOSA J R, et al. Ho-mogeneous ice nucleation at moderate supercooling from molecular simulation[J]. Journal of the Ameri-can Chemical Society, 2013, 135(40): 15008-15017.
[60] MATSUMOTO M, SAITO S, OHMINE I. Mo-lecular dynamics simulation of the ice nucleation and growth process leading to water freezing[J]. Nature, 2002, 416(6879): 409-413.
[61] NISTOR R A, MARKLAND T E, BERNE B. J. Inter-face-Limited Growth of Heterogeneously Nucleated Ice in Supercooled Water. J. Phys. Chem. B, 2014, 118 (3):752-760.
[62] HAMMOND D, QUERO M, IVEY P, et al. Analysis and Experimental Aspects of the Impact of Supercooled Water Droplets into Thin Water Films[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2005: 077.
[63] WHALEN E A, BROEREN A P, BRAGG M B. Aerodynamics of scaled runback ice accretions[J]. Journal of Aricraft, 2008, 45(3): 591-603.
[64] BAUTISTA C. WP3-airbus 3D icing computa-tions[R]. EXTICE Final Workshop, 2012.
[65] IULIANO E, MINGIONE G, PETROSINO F. Eulerian modeling of large droplet physics toward re-alistic aircraft icing simulation[J]. Journal of Aircraft, 2011, 48(5): 1621-1632.
[66] LI H, ROISMAN I V, TROPEA C. Experiments and modelling of splash[R]. WP2 Final Technical Re-port, EXTICE, 2012.
[67] WORSTER M G. Solidification of fluids[M]. Perspectives in Fluid Dynamics, Cambridge Universi-ty Press, 2000.
[68] LANGER J S, MULLER-KRUMBHAAR H. Theory of dendritic growth[J]. Acta Metallurgica, 1978, 26(11): 1681-1687.
[69] 侯硕, 曹义华. 基于润滑理论的二维积冰数值模拟[J]. 北京航空航天大学学报, 2014, 40(10): 1442-1450.
HOU S, CAO Y H. Numerical simulation of two dim ensional ice accretion based on lubrication theory[J]. Journal of Beijing University of Aeronautics and As-tronautics, 2014, 40(10): 1442-1450. (in Chinese)
[70] DU Y X, STEPHAN E B, GUI Y W, et al. Heat and mass transfer study of supercooled large droplet icing[C]//2015 International Conference on Fluid Me-chanics, Heat Transfer and Thermodynamics, Toronto, Canada, 2015.
[71] PARASCHIVOIU I, SAEED F. Aircraft Icing[M]. John Wiley & Sons, INC, 2004.
[72] VARGAS M, RESHOTKO E. LWC and tem-perature effects on ice accretion formation on swept wings at glaze ice conditions[C]//38th Aerospace Sci-ences Meeting, Reno, NV, United States, 2000.
[73] 杜雁霞, 桂业伟, 柯鹏, 等. 飞机结冰冰型微结构特征的分形研究[J]. 航空动力学报, 2011, 26(5): 997-1002.
DU Y X, GUI Y W, KE P, et al. Investigation on the ice-type microstructure characteristics of aircraft icing based on the fractal theories[J]. Journal of aerospace Power, 2011, 26(5): 997-1002. (in Chinese)
[74] 李伟斌, 易贤, 杜雁霞, 等. 基于变分分割模型的结冰形测量方法[J/OL], 航空学报, 2016, 37(x): xxx-xxx. [2016-0620]. http://hkxb.buaa.edu.cn/CN/volumn/home. shtml DOI: 10.7527/S1000-6893.2016.0129.
LI W B, YI X, DU Y X, et al. A measurement ap-proach for ice shape based on variational segmenta-tion model [J/OL]. Acta Aeronautica et Astronautica Sinica, 2016, 37(x): xxx-xxx. [2016-0620]. http://hkxb.buaa.edu.cn/ CN/volumn/home.shtml. DOI: 10.7527/S1000-6893.20 16.0129. (in Chinese)
[75] SZILDER K, LOZOWSKI E P. Three-dimensional modelling of ice accretion density[J]. Quarterly Journal of the Royal Meteorological Society, 2000, 126(568): 2395-2404.
[76] LIBBRECHT K G. The physics of snow crys-tals[J]. Reports on progress in physics, 2005, 68(4): 855.
[77] MOORE E B, DE LA LLAVE E, WELKE K, et al. Freezing, melting and structure of ice in a hydro-philic nanopore[J]. Physical Chemistry Chemical Physics, 2010, 12(16): 4124-4134.
[78] 杜雁霞. 飞机结冰的相变机理及传热特性研究, 博士后研究报告, 中国空气动力研究与发展中心, 2009.
DU Y X. Phase Change and Heat Transfer Mecha-nisms of Aircraft Icing, China Aerodynamics Re-search and Development Center, 2009.(in Chinese)
[79] 周志宏, 易贤, 桂业伟等. 考虑水滴动力学效应的结冰试验相似准则[J]. 实验流体力学, 2016, 30(20): 20-25.
ZHOU Z H, YI X, GUI Y W, et al. Icing scaling law with the dynamic effects of water droplets[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(20): 20-25. (in Chinese)
[80] KONG W L,LIU H. Development and theoret-ical analysis of an aircraft supercooled icing model[J]. Journal of Aircraft, 2014, 51(3): 975-986.
[81] 吴佩佩, 朱春玲, 刘文平, 等. 过冷大水滴条件下机翼结冰数值仿真[J], 计算机仿真, 2014, 31(9): 51-55.
WU P P, ZHU C L, LIU W P, et al. Numerical simula-tion of aircraft icing under supercooled large droplet conditions[J]. Computer Simulation, 2014, 31(9): 51-55. (in Chinese)
[82] 王超, 常士楠, 吴孟龙, 等. 过冷大水滴飞溅特性数值分析[J], 航空学报, 2014, 35(4): 1004-1011.
WANG C, CHANG S N, WU M L, et al. Numerical investigation of splashing characteristics in super-cooled large droplet regime[J]. Acta Aeronautica ET Astronautica Sinica, 2014, 35(4): 1004-1011. (in Chi-nese)
[83] 杨胜华, 林贵平. 机翼结冰过程的数值模拟[J]. 航空动力学报, 2011, 26(2): 323-330.
YANG S H, LIN G P. Numerical simulation of ice accretion on airfoils[J]. Journal of Aerospace Power, 2011, 26(2): 323-330. (in Chinese)
[84] 王桥. 过冷大水滴动力学特性的温度影响实验研究[D]. 绵阳: 中国空气动力研究与发展中心, 2015.
WANG Q. Experimental study on the temperature effect of the dynamic characteristics of the super-cooled large droplet[D]. Mianyang: China Aerody-namics Research and Development Center, 2015.(in Chinese)
[85] 杜雁霞, 桂业伟, 肖春华, 易贤. 溢流条件下飞机结冰过程的传热特性研究[J]. 航空动力学报, 2009, 24(9): 1966-1971.
DU Y X, GUI Y W, XIAO C H, et al. Investigation of heat transfer characteristics of aircraft icing under runback water[J]. Journal of Aerospace Power, 2009, 24(9): 1966-1971. (in Chinese)
[86] BAI J Q, LI X, HUA J, et al. Ice accretion simu-lation in supercooled large droplets regime[J]. Acta Aerodynamica Sinica, 2013, 31(06): 801-811.
[87] High Level Ice Crystal Icing: Effects on Engines. http://www.skybrary.aero/index.php/High_Level_Ice_Crystal_Icing:_Effects_on_Engines.
[88] BELCASTRO C M, FOSTER J V. Aircraft loss-of-control accident analysis[C]//Proceedings of AIAA Guidance, Navigation and Control Conference, To-ronto, Canada, Paper No. AIAA-2010-8004. 2010.
[89] ADDY JR H E, VERES J P. An overview of NASA engine ice-crystal icing research[R]. NASA/TM, 2011-217254.
[90] MASON J G, STRAPP J W, CHOW P. The ice particle threat to engines in flight[C]//44th AIAA Aerospace Sciences Meeting, Reno, Nevada, 2006: 9-12.
[91] ALFONS S, FABIEN D, ALICE G, et al. High IWC-Ice Water Content of clouds at High altitude[R]. Research Project EASA. 2011. C30, 2012.
[92] LEROY D, FONTAINE E, SCHWARZENBOECK A, et al. HAIC/HIWC field campaign-investigating ice microphysics in high ice water content regions of mesoscale convective sys-tems[C]//EGU General Assembly Conference Ab-stracts, 2015, 17: 9551.
[93] STRUK P M, BROEREN A P, TSAO J C, et al. Fundamental ice crystal accretion physics studies[R]. NASA/TM-2012-217429.
[94] KNEZEVICI D C, FULEKI D, CURRIE T, et al. Parti-cle size effects on ice crystal accretion[C]//4th AIAA Atmospheric and Space Environments Conference, 2012, 10: 6.2012-3039.
[95] JORGENSON P C E, VERES J P, COENNEN R. Modeling of commercial turbofan engine with ice crystal ingestion: follow-on[C]//6th Atmospheric and Space Environments Conference, Atlanta, Georgia, 2014.
[96] WRIGHT W B, JORGENSON P C E, VERES J P. Mixed phase modeling in GlennICE with application to engine icing[C]//AIAA Atmospheric and Space En-vironments Conference, 2010: 7674.

文章导航

/