基于复杂动力学仿真的结冰情形下飞行安全窗构建方法
收稿日期: 2016-08-23
修回日期: 2016-10-25
网络出版日期: 2016-11-03
基金资助
国家“973”计划(2015CB755800);国家自然科学基金(61374145,U1333131)
Development of flight safety window in icing conditions based on complex dynamics simulation
Received date: 2016-08-23
Revised date: 2016-10-25
Online published: 2016-11-03
Supported by
National Basic Research Program of China (2015CB755800); National Natural Science Foundation of China (61374145, U1333131)
目前针对结冰情形下增强驾驶员情景感知的研究比较有限,现有的手段一般为通过评估部分飞行安全关键参数是否超出其极限值来对风险事件是否发生进行预测。建立了驾驶员操纵-飞机本体-积冰影响的动力学模型,通过对单个飞行情形预测时间段内飞行参数风险度的叠加得到该情形下的飞行安全谱,并在此基础上得到该情形下的风险值。基于建立的并行飞行仿真平台,获取飞机在整个操纵范围内的风险拓扑图,即安全窗。分析了飞机在对称结冰情形和非对称结冰情形下飞行安全窗的变化,并对结冰的致灾机理进行了分析。仿真结果表明结冰导致安全飞行范围缩减,对于非对称结冰还会出现安全窗不对称的现象。安全谱的提出可以为事故的演化分析提供一种全面直观的分析方法,安全窗的构建可为飞机遭遇各种不利情形下的驾驶员操纵提供指示,也可为飞机设计人员优化飞机性能提供一定的参考。
裴彬彬 , 徐浩军 , 薛源 , 李哲 , 刘东亮 . 基于复杂动力学仿真的结冰情形下飞行安全窗构建方法[J]. 航空学报, 2017 , 38(2) : 520695 -520708 . DOI: 10.7527/S1000-6893.2016.0274
Studies on enhancing situational awareness of pilots in icing conditions are relatively rare. Current methods normally predict occurrence of accidents by estimating whether the safety related parameters exceed their limitations. Complex dynamics of the pilot-vehicle-icing effect model is established. Safety spectrum of a single flight condition is obtained by comparing the risk degree of the flight data through the predict time interval, and the colored risk value for the flight condition is further acquired. Safety window for flight safety in the whole manipulation can be calculated using parallel flight simulation platform. The safety windows of symmetric and asymmetric icing conditions are researched, and the disaster-causing mechanism is analyzed. Simulation results show that ice will lead to shrink of the safety flight scope, and the asymmetrical ice will lead to the uneven safety window. The proposed method can provide theoretical support for enhancement of situational awareness in different adverse events, and engineering tool for optimizing the aircraft performance for aircraft designers.
[1] BURDUN I Y. A method for accident reconstruction and neighborhood analysis using an autonomous situational model of flight and flight recorder data[C]//Advances in Aviation Safety Conference and Exposition. Warrendale, PA:SAE International, 1999:1-13.
[2] Boeing. Airplanes statistical summary of commercial jet airplane accidents:Worldwide operations 1959-2005[R]. Chicago, IL:The Boeing Company, 2006:1-25.
[3] Airbus Customer Services. Human performance:Enhancing situational awareness:FLT_OPS-HUM-PERF-SEQ 06-REV 01[R]. Blagnac Cedex:Airbus, 2007.
[4] BURDUN I Y. The intelligent situation awareness and forecasting environment (The S.A.F.E. Concept) a case study[C]//Advances in Aviation Safety Conference and Exposition. Warrendale, PA:SAE International, 1998:1-15.
[5] ZOLGHADRI A. Early warning and prediction of flight parameter abnormalities for improved system safety assessment[J]. Reliability Engineering and System Safety, 2002, 76(1):19-27.
[6] ROUWHORST W F J A, MARSMAN A P L A. A piloted investigation of an integrated situation awareness system (ISAS):AIAA-2006-6723[R]. Reston:AIAA, 2006.
[7] BORST C, SJER F A, MULDER M, et al. Ecological approach to support pilot terrain awareness after total engine failure[J]. Journal of Aircraft, 2008, 45(1):159-171.
[8] BORST C, GROOTENDORST F H, BROUWER D I K, et al. Design and evaluation of a safety augmentation system for aircraft[J]. Journal of Aircraft, 2014, 51(1):12-22.
[9] BRAGG M B, BASAR T, PERKINS W R, et al. Smart icing systems for aircraft icing safety[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reston:AIAA, 2002.
[10] DETERS R, DIMOCK G A, SELIG M S. Icing encounter flight simulator with an integrated smart icing system:AIAA-2002-4599[R]. Reston:AIAA, 2002.
[11] GINGRAS D R, BARNHART B, RANAUDO R, et al. Envelope protection for in-flight ice contamination[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009.
[12] GINGRAS D R, BARNHART B, RANAUDO R, et al. Development and implementation of a model-driven envelope protection system for in-flight ice contamination[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2010.
[13] RANAUDO R, MARTOS B, NORTON B, et al. Piloted simulation to evaluate the utility of a real time envelope protection system for mitigating in-flight icing hazards[C]//AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2010.
[14] 徐忠达, 苏媛, 曹义华.平尾积冰对飞机纵向气动参数的影响[J]. 航空学报, 2013, 34(7):1563-1571. XU Z D, SU Y, CAO Y H. Effects of tailplane icing on aircraft longitudinal aerodynamic parameters[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1563-1571(in Chinese).
[15] DONG Y, AI J. Research on inflight parameter identification and icing location[J]. Aerospace Science and Technology, 2013, 29(1):305-312.
[16] 应思斌, 艾剑良. 飞机结冰包线保护对开环飞行性能影响与仿真[J]. 系统仿真学报, 2010, 22(10):2273-2301. YING S B, AI J L. Simulation of aircraft flight envelope protect in icing encounters effects on open loop dynamic[J]. Journal of System Simulation, 2010, 22(10):2273-2301(in Chinese).
[17] 刘东亮, 徐浩军, 李嘉林, 等. 飞行结冰后复杂系统动力学仿真与风险评估[J]. 系统仿真学报, 2011, 23(4):643-647. LIU D L, XU H J, LI J L, et al. Dynamic simulation study of stalling in wing icing conditions and risk evaluation[J]. Journal of System Simulation, 2011, 23(4):643-647(in Chinese).
[18] 王明丰, 王立新, 黄成涛. 积冰对飞机纵向操稳特性的量化影响[J]. 北京航空航天大学学报, 2008, 34(5):592-595. WANG M F, WANG L X, HUANG C T. Computational effects of ice accretion on aircraft longitudinal stability and control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(5):592-595(in Chines).
[19] 张智勇. 结冰飞行动力学特性与包线保护控制律研究[D]. 南京:南京航空航天大学, 2006. ZHANG Z Y. Research on iced aircraft flight dynamics characteristics and envelope protection control law[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2006(in Chinese).
[20] TRUJILLO A, GREGORY I. Pilot preferences on displayed aircraft control variables[J]. Lecture Notes in Computer Science, 2013, 8020(1):203-211.
[21] SIBILSKI K, LASEK M, LADYZYNSKA-KOZDRAS E, et al. Aircraft climbing flight dynamics with simulated ice accretion:AIAA-2004-4948[R]. Reston:AIAA, 2004.
[22] SONNEVELDT L. Nonlinear F-16 model description[R]. The Netherlands:Delft University of Technology, 2010.
[23] COOK M V. Flight dynamics principles[M]. Burlington, MA:Butterworth-Heinemann, 2007:66-95.
[24] 吴森堂. 飞行控制系统[M]. 北京:北京航空航天大学出版社, 2013:54-64. WU S T. Flight control system[M]. Beijing:Beihang University Press, 2013:54-64(in Chinese).
[25] HUESCHEN R M. Development of the transport class model (TCM) aircraft simulation from a sub-scale generic tra nsport model (GTM) simulation:NASA/TM-2011-217169[R]. Washington, D.C.:NASA, 2011.
[26] HANKE C R, NORDWALL D R. The simulation of a jumbo jet transport aircraft. Volume 2:Modeling data/detail:NASA-CR-114494[R]. Washington, D.C.:NASA, 1970.
[27] DOGAN A, KAEWCHAY K. Probabilistic human pilot approach:Application to microburst escape maneuver[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2):357-369.
[28] GAO Z, GU H. Simulation of microburst escape with probabilistic pilot model[J]. Lecture Notes in Computer Science, 2011, 7030(1):663-670.
[29] DOGAN A, KABAMBA P T. Escaping microburst with turbulence altitude, dive, and pitch guidance strategies[J]. Journal of Aircraft, 2000, 37(3):417-426.
[30] 高金源, 李陆豫, 冯亚昌. 飞机飞行品质[M]. 北京:国防工业出版社, 2003:135-140. GAO J Y, LI L Y, FENG Y C. Aircraft handling quality[M]. Beijing:National Defence Industry Press, 2003:135-140(in Chinese).
[31] BRAGG M, HUTCHISON T, MERRET J. Effect of ice accretion on aircraft flight dynamics[C]//38th AIAA Aerospace Sciences Meeting & Exhibit. Reston:AIAA, 2000.
[32] LAMPTON A, VALASEK J. Prediction of icing effects on the lateral directional stability and control[J]. Aerospace Science and Technology, 2012, 23(1):305-311.
[33] LAMPTON A, VALASEK J. Prediction of icing effects on the coupled dynamic response of light airplanes[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston:AIAA:2007.
[34] SHARMA V, VOULGARIS P G, FRAZZOLI E. Aircraft autopilot analysis and envelope protection for operation under icing conditions[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(3):454-465.
[35] Federal Aviation Administration. Pilot guide flight in icing conditions:AC 91-74A[R]. Washington, D.C.:FAA, 2007.
[36] BURDUN I Y. Automated planning, exploration and mapping of complex operational domains of flight using multifactor situational trees[J]. SAE International Journal of Aerospace, 2011, 4(2):1149-1175.
/
〈 | 〉 |