火星进入器高空稀薄气动特性
收稿日期: 2016-05-20
修回日期: 2016-09-27
网络出版日期: 2016-10-17
基金资助
国家自然科学基金(11402251)
Aerodynamics of Mars entry vehicles under hypersonic rarefied condition
Received date: 2016-05-20
Revised date: 2016-09-27
Online published: 2016-10-17
Supported by
National Natural Science Foundation of China (11402251)
针对火星稀薄大气环境进入器气动特性问题,以类火星科学实验室外形为例,计算分析火星稀薄大气真实气体效应对气动特性的影响,给出火星高空稀薄环境下的气动特性规律。研究发现,随着飞行高度的增加,稀薄度增加,激波脱体距离、激波厚度增大,激波强度减弱,明显的激波结构逐渐消失,流场等值线更趋于圆弧状分布;真实气体效应使得迎风面压缩及背风面膨胀增强,轴向力、法向力及顶点力矩系数等预测结果与完全气体模型预测结果相比绝对值偏大;随着稀薄度增大,轴向力、法向力及顶点力矩系数等绝对值增大,在同样的迎角下,随稀薄度的增加,纵向压心前移,进入器的静稳定性变差。
黄飞 , 吕俊明 , 程晓丽 , 李齐 . 火星进入器高空稀薄气动特性[J]. 航空学报, 2017 , 38(5) : 120457 -120457 . DOI: 10.7527/S1000-6893.2016.0264
Attempt has been made to analyze the aerodynamics of Mars entry vehicles under hypersonic rarefied conditions by simulating the flows around the Mars Science Laboratory. The effect of real gas model on hypersonic rarefied aerodynamics is investigated to obtain the aerodynamic characteristics of the entry capsule. The results show that as the flight altitude increases, rarefaction, shock standoff distance and shock thickness increases, shock intensity is weakened at the same time, and flow contours tend to be more of arc shape. Real gas effect results in compressibility of the windward and expansion of the leeward, and also increase of axial force coefficient, normal force coefficient and pitch moment coefficient. On the other hand, as rarefaction enhances, the axial force coefficient, normal force coefficient and pitch moment coefficient also increases. At the same angle of attack, the pressure center moves forward and static stability decreases as the flight altitude increases.
Key words: Mars; entry vehicle; rarefied; direct simulation Monte Carlo; aerodynamics
[1] INGOLDBY R N, MICHEL F C, FLAHERTY T M, et al. Entry data analysis for Viking Landers 1 and 2 final report:NASA CR-159388[R]. Washington, D.C.:NASA, 1976.
[2] RICHARD P K, MARK D G, LYNN E C, et al. Entry, descent, and landing communications for the 2007 phoenix Mars Lander[J]. Journal of Spacecraft and Rockets, 2008, 45(3):543-547.
[3] KARL T E, BRIAN R H, CHRISTOPHER O J. Mars Science Laboratory heatshield aerothermodynamics:Resign and reconstruction:AIAA-2013-2781[R]. Reston:AIAA, 2013.
[4] 欧阳自远, 肖福根. 火星探测的主要科学问题[J]. 航天器环境工程, 2011, 28(3):205-217. OUYANG Z Y, XIAO F G. Major scientific issues involved in Mars exploration[J]. Spacecraft Environment Engineering, 2011, 28(3):205-217 (in Chinese).
[5] BRAUN R D, MANNING R M. Mars exploration entry, descent and landing challenges[J]. Journal of Spacraft Rockets, 2007, 44(2):310-323.
[6] WRIGHT M J,TANG C Y, EDQUIST K T, et al. A review of aerothermal modeling for Mars entry missions:AIAA-2010-0443[R]. Reston:AIAA, 2010.
[7] BIRD G A. Molecular gas dynamics and direct simulation of gas flow Clarendon[M]. Oxford:Oxford Universtiy Press, 1994.
[8] BORGANOFF C, LARSEN P S. Statistical collision model for Monte Carlo simulation of polyatomic gas mixture[J]. Journal of Computational Physics, 1975, 18(18):405-420.
[9] 黄飞, 陈智, 程晓丽, 等. 一种基于自适应碰撞距离的DSMC虚拟子网格方法[J]. 空气动力学学报, 2014, 32(4):506-510. HUANG F, CHEN Z, CHENG X L, et al. A virtual sub-cells technique with transient adaptive collision distance for the DSMC method[J]. Acta Aerodynamics Sinica, 2014, 32(4):506-510 (in Chinese).
[10] 黄飞, 吕俊明, 程晓丽, 等. 火星稀薄大气模型不确定性对进入器气动特性的影响[J]. 宇航学报, 2015, 36(10):800-817. HUANG F, LV J M, CHENG X L, et al. Impact of Martian rarefied atmosphere parameters on entry vehicle aerodynamics under hypersonic conditions[J]. Journal of Astronautics, 2015, 36(10):800-817 (in Chinese).
[11] SCHOENENBERGER M, DYAKONOV A, BUNING P, et al. Aerodynamic challenges for the Mars Science Laboratory entry, descent and landing:AIAA-2009-3914[R]. Reston:AIAA, 2009.
/
〈 | 〉 |