流体力学与飞行力学

基于任意多项式中弧线的单级高效率风扇设计

  • 邱名 ,
  • 郝颜 ,
  • 范召林 ,
  • 江雄 ,
  • 陈逖
展开
  • 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000

收稿日期: 2016-08-01

  修回日期: 2016-09-26

  网络出版日期: 2016-10-14

Design of single stage high efficiency fan based on arbitrary polynomial camber line airfoils

  • QIU Ming ,
  • HAO Yan ,
  • FAN Zhaolin ,
  • JIANG Xiong ,
  • CHEN Ti
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2016-08-01

  Revised date: 2016-09-26

  Online published: 2016-10-14

摘要

为了在压气机通流设计阶段考虑叶片弯掠效应,开发了基于流线曲率法的通流设计程序,提出一种基于四次多项式的任意中弧线叶片造型方法,并推导了任意回转面上的中弧线表达式。以此方法为基础,采用通流设计与叶片造型相互迭代的方式开展大流量跨声速风扇设计研究。此风扇级的设计点为巡航状态,设计流量为155 kg/s、压比为1.54。研究结果表明:在设计状态,此风扇级的总压比为1.545,转子和级效率分别为0.939、0.916;在设计转速下,失速裕度为17%,转子和级最高效率分别为0.945、0.923;在起飞状态,流量接近440 kg/s,效率与巡航状态相当,压比高于巡航状态。

本文引用格式

邱名 , 郝颜 , 范召林 , 江雄 , 陈逖 . 基于任意多项式中弧线的单级高效率风扇设计[J]. 航空学报, 2017 , 38(5) : 120657 -120657 . DOI: 10.7527/S1000-6893.2016.0262

Abstract

To adequately consider the blade lean and sweep influence on compressor performance in the stage of through-flow design, a through-flow design program is developed basing on streamline curvature approach, and a blade airfoils generating method is introduced basing on arbitrary camber lines. The camber lines is expressed on arbitrary rotary surface in the investigation. Basing on these methods, a single stage transonic fan is designed. The designing is done through the iteration between through-flow designing with blade geometry generating. The cruise state, in which the mass flow is 155 kg/s and pressure-ratio is 1.54, is treated as design state in the investigation. The results show that the pressure-ratio is 1.545, and rotor efficiency of 0.939, stage efficiency of 0.916 at design state. At the design speed, the stall margin is 17%, and the highest rotor (stage) efficiency is 0.945 (0.923). The mass flow is close to 400 kg/s, and efficiency increases a litter, pressure-ratio obviously rises at off state.

参考文献

[1] WU Z H,BROWN C A. A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-, radial, and mixed-flow types:NACA TN-2604[R]. Washington, D.C.:NACA, 1952.
[2] CREVELING H F, CARMODY R H. Axial flow compressor design computer programs incorporating full radial equilibrium, Part I-Flow path and radial distribution of energy specified (PROGRAM Ⅱ):NASA CR-54532[R]. Washington, D.C.:NASA, 1968.
[3] CREVELING H F, CARMODY R H. Axial flow compressor design computer programs incorporating full radial equilibrium, Part Ⅱ-Radial distribution of total pressure and flow path or axial velocity ratio specified (PROGRAM Ⅱ):NASA CR-54531[R]. Washington, D.C.:NASA, 1968.
[4] FROST D H. A Streamline curvature through flow computer program for analysing the flow through axial-flow turbomachines:RM312-ARC3687[R]. London:National Gas Turbine Establishment, 1972.
[5] MARSH H. A digital computer program for the through-flow fluid mechanics in an arbitrary turbomachine using a matrix method:RM 3509[R]. London:National Gas Turbine Establishment, 1968.
[6] DAMLE S V. Throughflow method for turbomachines using Euler solvers:AIAA-1996-0010[R]. Reston:AIAA, 1996.
[7] 季路成, 孟庆国, 周盛. 叶轮机通流计算的时间推进方法[J]. 航空动力学报, 1999, 14(1):24-26. JI L C, MENG Q G, ZHOU S. Time-marching method for through-flow computation of turbomachinery[J]. Journal of Aerospace Power, 1999, 14(1):24-26 (in Chinese).
[8] 施鑫, 赵拥军, 季路成, 等. 时间推进通流气动设计方法的探索和分析[J]. 工程热物理学报, 2002, 23(增刊):50-53. SHI X, ZHAO Y J, JI L C, et al. Explorations and analysis about time-marching through-flow method[J]. Journal of Engineering Thermophysics, 2002, 23(Suppl):50-53 (in Chinese).
[9] NOVAK R A. Streamline curvature computing procedure for fluid-flow problems[J]. Journal of Engineering for Power, 1967, 89(4):478-490.
[10] WENNERSTROM A J. On the treatment of body forces in the radial equilibrium equation of turbomachinery:AD-A008127/ARL 75-0052[R]. Washington, D.C.:DTIC/ARL, 1975..
[11] HEARSEY R M. Program HT0300 NASA 1994:D6-81569TN[R]. Washington, D.C.:NASA, 1994.
[12] LAW C H. A computer program for variable-geometry single-stage axial compressor test data analysis (UD0400):AD-A106676/AFWAL-TR-81-2078[R]. Washington, D.C.:DTIC/ARL, 1981.
[13] 闫转运, 成金鑫, 陈江. 多级轴流压气机通流造型一体化设计研究[J]. 工程热物理学报, 2016, 37(6):1218-1224. YAN Z Y, CHEN J X, CHEN J. Integrated through-flow and blade shape design of multi-stage axial flow compressor[J]. Journal of Engineering Thermophysics, 2016, 37(6):1218-1224 (in Chinese).
[14] 《航空发动机设计手册》总编委会. 航空发动机设计手册第8册-压气机[M]. 北京:航空工业出版社, 1999:109-114. "Aero Engine Design Handbook" Editorial Board. Aero engine design handbook, Volume 8-Compressor[M]. Beijing:Aviation Industry Press, 1999:109-114 (in Chinese).
[15] 胡骏, 赵运生, 丁宁. 进气畸变对大涵道比涡扇发动机稳定性的影响[J]. 航空发动机, 2013, 39(6):6-12. HU J, ZHAO Y S, DING N. Investigation of influence of inlet distortion on high bypass ratio turbofan engine stability[J]. Aeroengine, 2013, 39(6):6-12 (in Chinese).
[16] 周旭. 民用大涵道比风扇叶片气动设计研究[D]. 南京:南京航空航天大学, 2012. ZHOU X. Research on aerodynamic design of civil high bypass ratio fan blades[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
[17] 王志强, 沈锡钢, 胡骏. 大涵道比涡扇发动机风扇转子叶片优化[J]. 航空动力学报, 2014, 29(9):2202-2209. WANG Z Q, SHEN X G, HU J. Optimization of fan rotor blade in high bypass ratio turbofan engine[J]. Journal of Aerospace Power, 2014, 29(9):2202-2209 (in Chinese).
[18] 胡应交. 民用大涵道比风扇气动设计[D]. 哈尔滨:哈尔滨工业大学, 2010. HU Y J. Aerodynamic design of civilian high bypass ratio fan[D]. Harbin:Harbin Institute of Technology, 2010 (in Chinese).
[19] 朱芳, 陈云永, 卫飞飞, 等. 某民用大涵道比涡扇发动机风扇缩尺试验件气动性能数值仿真[J]. 航空动力学报, 2013, 28(7):1539-1548. ZHU F, CHEN Y Y, WEI F F, et al. Numerical simulation of aerodynamic performance of scaled fan of a civil high-bypass-ratio turbofan engine[J]. Journal of Aerospace Power, 2013, 28(7):1539-1548 (in Chinese).
[20] 高丽敏, 李瑞宇, 曾瑞慧. 大涵道比涡扇发动机风扇长短叶片结构:中国, CN104632701A[P]. 2015. GAO L M, LI R Y, ZENG R H. Short splitter blade structure of high bypass ratio turbofan engine fan:China, CN104632701A[P]. 2015 (in Chinese).
[21] MOORE R D, REID L. Design and overall performance of four highly loaded, high-speed inlet stages for an advanced high-pressure-ratio core compressor:NASA-TP-1337[R]. Washington, D.C.:NASA, 1978.
[22] DUNHAM J. CFD Validation for propulsion system components:AGARD-AR-355[R]. Neuillysurseine:AGARD, 1998.
[23] SUDER K L. Experimental investigation of the flow field in a transonic, axial flow compressor with respect to the development of blockage and loss:NASA-TM-107310[R]. Washington, D.C.:NASA, 1996.
[24] FROST G R, WENNERSTROM A J. Thedesign of axial compressor airfoils using arbitrary camber lines:AD 765165/ARL 73-0107[R]. Washington, D.C.:DTIC/ARL, 1973.
[25] FROST G R, HEARSEY R M, WENNERSTROM A J. A computer program for the specification of axial compressor airfoils:AD0756879/ARL 72-0171[R]. Washington, D.C.:DTIC/ARL, 1972.
[26] 吴宏, 李秋实, 宋亚慧, 等. 风扇通流设计中环量分布形式的探讨[J]. 工程热物理学报, 2008, 29(1):43-45. WU H, LI Q S, SONG Y H, et al. Effect of swirl distribution on fan through flow design[J]. Journal of Engineering Thermophysics, 2008, 29(1):43-45 (in Chinese).
[27] MILLER G R, LEWIS J G W, HARTMANN M J. Shock losses in transonic compressor blade rows[J]. Journal of Engineering for Gas Turbines & Power, 1961, 83(3):235-241.

文章导航

/