流体力学与飞行力学

用于直升机在大气紊流中的旋翼状态反馈控制

  • 吉洪蕾 ,
  • 陈仁良 ,
  • 李攀
展开
  • 南京航空航天大学 航空宇航学院 直升机旋翼动力学国家级重点实验室, 南京 210016

收稿日期: 2016-06-17

  修回日期: 2016-08-24

  网络出版日期: 2016-09-12

基金资助

国家自然科学基金(51405227,11672128)

Rotor-state feedback control for helicopter in atmospheric turbulence

  • JI Honglei ,
  • CHEN Renliang ,
  • LI Pan
Expand
  • National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2016-06-17

  Revised date: 2016-08-24

  Online published: 2016-09-12

Supported by

National Natural Science Foundation of China (51405227,11672128)

摘要

发展了一种集成旋翼状态反馈(Rotor-State Feedback,RSF)控制的飞行控制系统,以提升直升机在大气紊流环境中低速飞行时的飞行品质。基于经典显模型跟踪控制系统,对机体和旋翼状态反馈增益进行协同设计,以综合优化旋翼/机体耦合动稳定性和直升机在飞行品质相关频率范围(1~12 rad/s)内的紊流缓和能力。同时,设计了一个旋翼前馈控制以增强直升机的操纵响应特性。对直升机飞行品质的线性分析表明:RSF控制的引入能够在实现旋翼/机体耦合动稳定性控制的同时使滚转和俯仰通道的指令跟踪延迟时间分别降低21.87%和25.82%,扰动抑制带宽分别提升243.22%和72.56%。最后以飞行试验验证的高阶非线性飞行动力学模型进行数值模拟验证控制系统。结果表明:RSF控制的引入使直升机滚转、俯仰角速率对紊流响应的标准差分别降低55.68%和26.81%。集成RSF的控制系统能够提升直升机在紊流中的飞行品质。

本文引用格式

吉洪蕾 , 陈仁良 , 李攀 . 用于直升机在大气紊流中的旋翼状态反馈控制[J]. 航空学报, 2017 , 38(5) : 120541 -120541 . DOI: 10.7527/S1000-6893.2016.0242

Abstract

This paper develops a helicopter flight control system integrated with a Rotor-State Feedback (RSF) control law to improve helicopter flying qualities at low speed in turbulent atmospheric environment. Based on the baseline explicit model-following control system, the feedback gains of the body and rotor states are designed in synergy for comprehensive optimization of both the stability of the coupling rotor/fuselage dynamics and the turbulence alleviation in the interested frequency range of flying qualities (1-12 rad/s). Meanwhile, a feed-forward compensation design is added to improve the helicopter responsiveness to pilot controls. A linear analysis of the helicopter flying qualities shows that with the integration of the RSF control law, the stability of the coupling rotor/fuselage dynamics can be ensured, and the command tracking delay times of roll and pitch axes are reduced by 21.87% and 25.82% respectively, as well as the disturbance rejection bandwidths are improved by 243.22% and 72.56%. A high-order nonlinear flight dynamic model validated against flight test data is used to conduct a simulation to verify the integrated control system. Results show that with the integration of the RSF control law, the standard deviation of the helicopter roll and pitch rate responses to atmospheric turbulence are reduced by 55.68% and 26.81%, respectively. The flight control system integrated with the RSF control law has the capability to improve helicopter flying qualities in atmospheric turbulence.

参考文献

[1] DRYFOOS J B, KOTHMANN B D, MAYO J. An approach to reducing rotor-body coupled roll oscillations on the RAH-66 Comanche using modified roll rate feedback[C]//American Helicopter Society 55th Annual Forum. Fairfax, VA:American Helicopter Society, 1999:1-14.
[2] FLETCHER J W, LUSARDI J, MANSUR M H, et al. UH-60M upgrade fly-by-wire flight control risk reduction using the RASCAL JUH-60A in-flight simulator[C]//American Helicopter Society 64th Annual Forum. Fairfax, VA:American Helicopter Society, 2008:1-26.
[3] ELLIS C W. Effects of rotor dynamics on helicopter automatic control system requirements[J]. Aeronautical Engineering Review, 1953, 12(7):30-38.
[4] HALL W E, BRYSON A E. Inclusion of rotor dynamics in controller design for helicopters[J]. Journal of Aircraft, 1973, 10(4):200-206.
[5] BRICZINSKI S, COOPER D. Flight investigation of rotor/vehicle state feedback:NASA CR-132546[R]. Washington, D.C.:NASA, 1975.
[6] CHEN R T N, HINDSON W S. Influence of high-order dynamics on helicopter flight-control system bandwidth[J]. Journal of Guidance, Control, and Dynamics, 1986, 9(2):190-197.
[7] CHEN R T N. An exploratory investigation of the flight dynamics effects of rotor RPM variations and rotor state feedback in hover:NASA-TM-103968[R]. Washington, D.C.:NASA, 1992.
[8] TAKAHASHI M. Rotor-state feedback in the design of flight control laws for a hovering helicopter[J]. Journal of the American Helicopter Society, 1994, 39(1):50-62.
[9] TAKAHASHI M. H helicopter flight control law design with and without rotor state feedback[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(6):1245-1251.
[10] HOWITT J, HOWELL S E, MCCALLUM A T, et al. Experimental evaluation of flight control system designs exploiting rotor state feedback[C]//American Helicopter Society 57th Annual Forum. Fairfax, VA:American Helicopter Society, 2001:1-9.
[11] HOWITT J. Application of non-linear dynamic inversion to rotorcraft flight control[C]//American Helicopter Society 61th Annual Forum. Fairfax, VA:American Helicopter Society, 2005:1-10.
[12] HORN J F, GUO W, OZDEMIR G T. Use of rotor state feedback to improve closed-loop stability and handling qualities[J]. Journal of the American Helicopter Society, 2012, 57(2):1-10.
[13] GUO W, HORN J F. Rotor state feedback control for rotorcraft with variable rotor speed[C]//AIAA Guidance, Navigation, and Control Conference Proceedings. Reston:AIAA, 2009:1-12.
[14] HOWLETT J J. UH-60A Black Hawk engineering simulation program:NASA CR-166309[R]. Washington, D.C.:NASA, 1981.
[15] 李攀, 陈仁良. 直升机急拉杆机动飞行仿真建模与验证[J]. 航空学报, 2010, 31(12):2315-2323. LI P, CHEN R L. Formulation and validation of a helicopter model for pull-up maneuver simulation[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(12):2315-2323 (in Chinese).
[16] 吉洪蕾, 陈仁良, 李攀. 适用于直升机飞行力学分析的三维空间大气紊流模型[J]. 航空学报, 2014, 35(7):1825-1835. JI H L, CHEN R L, LI P. A model of three-dimensional-field atmospheric turbulence for helicopter flight dynamics analysis[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1825-1835 (in Chinese).
[17] LANDIS K H, GLUSMAN S I. Development of ADOCS controllers and control laws, Volume 2-Literature review and preliminary analysis:NASA CR-177339[R]. Washington, D.C.:NASA, 1987.
[18] TISCHLER M B, FLETCHER J W, MORRIS P M, et al. Flying quality analysis and flight evaluation of a highly augmented combat rotorcraft[J]. Journal of Guidance, Control, and Dynamics, 1991, 14(5):954-963.
[19] FROST C R, HINDSON W S, MORALEZ E, et al. Design and testing of flight control laws on the RASCAL research helicopter[C]//AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston:AIAA, 2002:1-11.
[20] United States Army Aviation and Missile Command, Aviation Engineering Directorate. Aeronautical design standard performance specification handling qualities requirements for military rotorcraft:ADS-33E-PRF[S]. Redstone Arsenal, AL:United States Army Aviation and Missile Command, Aviation Engineering Directorate, 2000:6-21.
[21] 陈复扬. 自动控制原理[M]. 北京:国防工业出版社, 2010:433-438. CHEN F Y. Principles of automatic control[M]. Beijing:National Defense Industry Press, 2010:433-438 (in Chinese).
[22] LINK D W, KASHAWLIC B E, FUJIZAWA B T, et al. Influence of frequency response analysis on MH-47G DAFCS development and flight test[C]//American Helicopter Society 67th Annual Forum. Fairfax, VA:American Helicopter Society, 2011:1-15.
[23] PADFIELD G D. Helicopter flight dynamics[M]. 2nd ed. Oxford:Blackwell, 2007:102-108.

文章导航

/