固体力学与飞行器总体设计

三支点柔性转子系统支承不同心激励特征及振动响应分析

  • 刘永泉 ,
  • 肖森 ,
  • 洪杰 ,
  • 马艳红
展开
  • 1. 北京航空航天大学 能源与动力工程学院, 北京 100083;
    2. 中国航空发动机集团有限公司 沈阳发动机设计研究所, 沈阳 110015;
    3. 先进航空发动机协同创新中心, 北京 100083

收稿日期: 2016-05-26

  修回日期: 2016-08-12

  网络出版日期: 2016-08-30

基金资助

国家自然科学基金(51575022,51475021);航空科学基金(20142151024)

Excitation characteristic and dynamic response of misalignment of flexible rotor system with three supportings

  • LIU Yongquan ,
  • XIAO Sen ,
  • HONG Jie ,
  • MA Yanhong
Expand
  • 1. School of Energy and Power Engineering, Beihang University, Beijing 100083, China;
    2. Shengyang Engine Design and Research Institute, Aero Engine(Group) Corporation of China, Shengyang 110015, China;
    3. Collaborative Innovation Center for Advanced Aero-Engine, Beijing 100083, China

Received date: 2016-05-26

  Revised date: 2016-08-12

  Online published: 2016-08-30

Supported by

National Natural Science Foundation of China (51575022, 51475021); Aeronautical Science Foundation of China (20142151024)

摘要

针对航空发动机三支点柔性转子系统的支承不同心问题,充分考虑转子结构特征和载荷特征,首次将当量刚度引入多支点柔性转子不同心问题的动力学分析,定量描述转子系统各支承间不同心度带来的转子轴段刚度非线性,并提出了多跨度柔性转子系统支承不同心激励的数学描述,建立了不同心激励下多跨度柔性转子系统的力学模型。基于Lagrange能量法,给出了转子系统动力学方程的求解方法,研究得到了支承不同心转子系统的动力响应特征。结果表明:支承不同心不仅引起转子过渡轴的刚度非线性,产生2倍频激励,还会给转子系统带来附加不平衡激励;对于三支点柔性转子系统而言,2倍频分量同样是支承不同心下转子系统振动响应的典型特征之一。转子系统2倍频分量随不同心量的增加而迅速增加,而1倍频分量基本保持不变。同时转子振动响应呈现"缓增速降"趋势,且随非线性刚度、不平衡量的增大愈加明显。

本文引用格式

刘永泉 , 肖森 , 洪杰 , 马艳红 . 三支点柔性转子系统支承不同心激励特征及振动响应分析[J]. 航空学报, 2017 , 38(3) : 220470 -220470 . DOI: 10.7527/S1000-6893.2016.0234

Abstract

Equivalent stiffness is introduced for the first time into dynamics analysis of the problem of bearing misalignment of flexible rotor system with three supportings, based on comprehensive consideration of the characteristics of rotor structure and load. Nonlinear stiffness of the rotor shaft with bearing misalignment can then be described quantitatively. Mathematical descriptions of the misalignment excitation of multi-span flexible rotor are obtained, and the mechanical modeling for the flexible rotor with bearing misalignment is established. The solution method for the governing equations for the rotor system with bearing misalignment is established based on Lagrange energy method, and the vibration characteristics of the rotor system is studied. The results show that the bearing misalignment leads to nonlinearity of the coupling's stiffness, resulting in 2 times frequency excitation load and extra unbalanced load. The 2 times frequency component is one typical feature of the rotor system with bearing misalignment. The 2 times frequency component increases rapidly with the increase of bearing misalignment, and the 1 times frequency component remains the same. The vibration response of the rotor shows a trend of "increasing slowly first, and then reducing quickly with the increase of rotation frequency", and turns to be more obvious with the increase of the nonlinear stiffness and unbalance.

参考文献

[1] 朱梓根, 李文明, 李其汉, 等. 航空涡喷、涡扇发动机结构设计准则:第六册转子系统[M]. 北京:中国航空工业总公司发动机系统工程局, 1997:72-101. ZHU Z G, LI W M, LI Q H, et al. The design criteria of turbine jet and turbofan:Book 6 Rotor system[M]. Beijing:Engine System Engineering Bureau, Aviation Industry Corporation of China, 1997:72-101(in Chinese).
[2] PIOTROWSKI J. Shaft alignment handbook[M]. Boca Raton, FL:CRC Press, 2007:35-42.
[3] MUSZYNSKA K. Rotordynamics[M]. Boca Raton, FL:CRC Press, 2005:205-224.
[4] 闻邦椿, 顾家柳. 高等转子动力学——理论、技术与应用[M]. 北京:机械工业出版社, 1999:77-82. WEN B C, GU J L. Advanced rotor dynamics-Theory technology and application[M]. Beijing:China Machine Press, 1999:77-82(in Chinese).
[5] ERTAS B H, JOHN M V. Effect of static and dynamic misalignment on ball bearing radial stiffness[J]. Journal of Propulsion and Power, 2004, 20(4):634-647.
[6] SARKAR S, NANDI A, NEOGY S, et al. Finite element analysis of misaligned rotors on oil-film bearings[J]. Sadhana-Academy Proceedings in Engineering Sciences, 2010, 35(1):45-61.
[7] HUBER M, STRZELECKI S, STEINHILPER W. Theoretical and experimental determination of the performances of misaligned and statically loaded cylindrical journal bearings[J]. Transaction of Mechanical Engineering, 1998, 24(1):31-37.
[8] CHILDS D. Turbomachinery rotordynamics:Phenomena modeling and analysis[J]. New York:John Wiley & Sons, 1993:16-22.
[9] RYBCZYNSKI J. The possibility of evaluating turbo-set bearing misalignment defects on the basis of bearing trajectory features[J]. Mechanical Systems and Signal Processing, 2011, 25(2):521-536.
[10] HUSSAINK M, REDMOND I. Dynamic response of two rotors connected by rigid mechanical coupling with parallel misalignment[J]. Journal of Sound and Vibration, 2002, 249(3):483-498.
[11] REDOMOND I. Study of a misaligned flexibly coupled shaft system having nonlinear bearings and cyclic coupling stiffness-Theoretical model and analysis[J]. Journal of Sound and Vibration, 2010, 329(6):700-720.
[12] HUSSAINK M. Dynamic stability of two rigid rotors connected by a flexible coupling with angular misalignment[J]. Journal of Sound and Vibration, 2003, 266(2):217-234.
[13] LEE Y S, LEE C W. Modelling and vibration analysis of misaligned rotor-ball bearing systems[J]. Journal of Sound and Vibration, 1999, 224(1):17-32.
[14] BAI C, ZHANG H, XU Q. Effects of axial preload of ball bearing on characteristics of a rotor-bearing system[J]. Nonlinear Dynamics, 2008, 53(3):173-190.
[15] WANG C, MA Y H, ZHANG D Y, et al. Interval analysis on aero-engine rotor system with misalignment[C]//ASME Turbo Expo 2012:Turbine Technical Conference and Exposition. West Conshohocken, PA:ASME, 2015.
[16] LI J, HONG J, MA Y H, et al. Modelling of misaligned rotor systems in aero-engines[C]//ASME 2012 International Mechanical Engineering Congress and Exposition. West Conshohocken, PA:ASME, 2012.
[17] 张振波, 马艳红, 李骏, 等. 航空发动机支承不同心转子系统力学模型研究[J]. 工程力学, 2014, 31(7):208-214. ZHANG Z B, MA Y H, LI J, et al. Research on dynamic model of aero-engine rotors with bearing misalignment[J]. Engineering Mechanics, 2014, 31(7):208-214(in Chinese).
[18] 张振波, 马艳红, 李骏, 等. 带有支承不同心转子系统动力响应[J]. 航空动力学报, 2012, 27(10):2321-2328. ZHANG Z B, MA Y H, LI J, et al. Dynamic response of aero-engine rotor system with bearing misalignment[J]. Journal of Aerospace Power, 2012, 27(10):2321-2328(in Chinese).
[19] 洪杰, 马艳红, 张大义. 航空燃气涡轮发动机总体结构设计与动力学分析[M]. 北京:北京航空航天大学出版社, 2012:412-426. HONG J, MA Y H, ZHANG D Y. Structure design and dynamic analysis of aero gas turbine engines[M]. Beijing:Beihang University Press, 2012:412-426(in Chinese).
[20] 陈光, 洪杰, 马艳红. 航空燃气涡轮发动机结构[M]. 北京:北京航空航天大学出版社, 2010:299-301. CHEN G, HONG J, MA Y H. Structure of aero gas turbine engines[M]. Beijing:Beihang University Press, 2010:299-301(in Chinese).
[21] 李俊慧, 马艳红, 洪杰. 转子系统套齿结构动力学设计[J]. 航空发动机, 2009, 35(4):36-39. LI J H, MA Y H, HONG J. Dynamic design method of spline joint structure for rotor system[J]. Aeroengine, 2009, 35(4):36-39(in Chinese).
[22] 刘延柱, 陈立群. 非线性振动[M]. 北京:高等教育出版社, 2001:53-58. LIU Y Z, CHEN L Q. Nonlinear vibration[M]. Beijing:Higher Education Press, 2001:53-58(in Chinese).

文章导航

/