天地往返飞行器大开口舱门关键技术及其解决途径
收稿日期: 2016-04-20
修回日期: 2016-08-26
网络出版日期: 2016-08-30
基金资助
国家级项目
Key technologies and solutions for large extensible door of re-entry space vehicle
Received date: 2016-04-20
Revised date: 2016-08-26
Online published: 2016-08-30
Supported by
National Level Program
李保江 , 邵济明 , 王长焕 , 黄鹏 . 天地往返飞行器大开口舱门关键技术及其解决途径[J]. 航空学报, 2016 , 37(S1) : 8 -15 . DOI: 10.7527/S1000-6893.2016.0243
The large extensible door is an indispensable part of the re-entry space vehicle, such as space shuttle and X-37B transportation vehicle. The length of the door can reach 1/3 to 1/2 that of the airframe. The development process of the door is very difficult due to the complex environment condition and multiplicity function requirements in the full duty cycle. The state of the art of the development of large extensible door is introduced. The common characteristics of the door are given through the analysis of the space vehicle. It is summarized that the key technologies included in the overall design, the thermal protection and heat sealing technology, the repeated deploy and close technology, the repeated lock and unlock technology, etc. The related technical solutions are also given.
Key words: re-entry space vehicle; space shuttle; spacecraft; door; overall design
[1] 王鑫, 阎杰, 于云峰. 高超声速天地往返飞行器研究[J]. 测控技术, 2006, 25(7):83-86. WANG X, YAN J, YU Y F. Research on hypersonic aerospace vehicle[J]. Measurement and Control Technology, 2006, 25(7):83-86 (in Chinese).
[2] 果琳丽, 朱永贵. 空间站天地往返运输系统初探[J]. 导弹与航天运载技术, 2000(1):7-11. GUO L L, ZHU Y G. Pilot study of the space transportation system for space station[J]. Missiles and Space Vehicles, 2000(1):7-11 (in Chinese).
[3] 彭小波. 组合循环动力技术在天地往返领域的发展与应用[J]. 导弹与航天运载技术, 2013(1):78-82. PENG X B. Development of combined cycle propulsion technology in reusable launch vehicle[J]. Missiles and Space Vehicles, 2013(1):78-82 (in Chinese).
[4] 李田囡, 王小锋, 张健全. 某无人机主起落架舱门联动机构设计[J]. 机电工程技术, 2011, 40(5):111-113. LI T N, WANG X F, ZHANG J Q. Linkage design for unmanned aerial vehicle (UAV) main landing gear door[J]. Mechanical & Electrical Engineering Technology, 2011, 40(5):111-113 (in Chinese).
[5] 张锐. 某型飞机前起落架收放机构及舱门开度分析[D]. 南京:南京航空航天大学, 2011:25-28. ZHANG R. Analysis of the retraction extend mechanism and the door open size of a type of nose landing gear[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:25-28 (in Chinese).
[6] 刘志全, 嵇景全. 载人航天器电动兼手动舱门的研究[J]. 中国空间科学技术, 2004(4):1-7. LIU Z Q, JI J Q. Study on an electric/manual hatch for the manned space vehicles[J]. Chinese Space Science and Technology, 2004(4):1-7 (in Chinese).
[7] 刘志全, 夏祥东, 嵇景全. 载人航天器舱门周边传动锁紧释放机构的原理与特点[J]. 载人航天, 2006(2):14-23. LIU Z Q, XIA X D, JI J Q. Principle and characteristics of manned spacecraft hatch periphery drive lock release mechanism[J]. Manned Space, 2006(2):14-23 (in Chinese).
[8] 罗克韦尔国际公司. 航天飞机运输系统[M]. 张钟林, 译. 北京:航空工业出版社, 1988:15-18. Rockwell International Co. Space shuttle transportation system[M]. ZHANG Z L, translated. Beijing:Aviation Industry Press, 1988:15-18 (in Chinese).
[9] 张鲁民. 航天飞机空气动力学分析[M]. 北京:国防工业出版社, 2009:26-31. ZHANG L M. Air dynamics analysis of space shuttle[M]. Beijing:National Defence Industry Press, 2009:26-31 (in Chinese).
[10] 沈玲玲. 空天飞行器再入过程中关键热结构的热分析[D]. 西安:西北工业大学, 2006:15-18 SHEN L L. Thermal analysis of the primary hot structure for re-entry space vehicle[D]. Xi'an:Northwestern Polytechnical University, 2006:15-18 (in Chinese).
[11] 李文武. 跨大气层飞行器总体设计及优化方法研究与实现[D]. 南京:南京航空航天大学, 2008:16-18. LI W W. Research and implementation of the overall design and optimization method of the cross atmosphere aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008:16-18 (in Chinese).
[12] 张勇. 面向控制的高超声速飞行器一体化设计[D]. 南京:南京航空航天大学, 2011:12-15. ZHANG Y. An integrated design of hypersonic vehicle based on control[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:12-15 (in Chinese).
[13] 邱春图, 陈振中. 高超声速飞行器热结构设计分析技术研究[J]. 飞机设计, 2012, 32(6):6-14. QIU C T, CHEN Z Z. Study of thermal-structure design and analysis for hypersonic vehicles[J]. Aircraft Design, 2012, 32(6):6-14 (in Chinese).
[14] 郭朝邦, 牛文, 李文杰. HTV-2热防护系统及热结构技术研究进展[J]. 飞航导弹, 2012(1):92-98. GUO Z B, NIU W, LI W J. Study on HTV-2 thermal protection system and thermal structure technology[J]. Missile, 2012(1):92-98 (in Chinese).
[15] DAVID E G, RAY D, HAROLD C, et al. Materials development for hypersonic flight vehicles[C]//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2013.
[16] DAVID A S, DANIEL B L. Lightweight TUFROC TPS for hypersonic vehicles[C]//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2006.
[17] DEMANGE J J, DUNLAP J, STEINETZ B M. Advanced control surface seal development for future space vehicles:NASA/TM-2004-212898[R]. Washington, D.C.:NASA, 2004.
[18] PATRICK H, DUNLAP J, BRUCE M S, et al. Rudder/fin seal investigations for the X-38 re-entry vehicle:NASA/TM-2000-210338[R]. Washington, D.C.:NASA,2000.
[19] 李凡, 王树浩, 陈江涛, 等. 飞行器典型热密封结构[J]. 宇航材料工艺, 2013(1):20-25. LI F, WANG S H, CHEN J T, et al. Typical high-temperature seal structure of reusable and hypersonic vehicles[J]. Aerospace Materials and Technology, 2013(1):20-25 (in Chinese).
[20] 彭祖军. 高温动密封结构设计与分析[D]. 哈尔滨:哈尔滨工业大学, 2011:12-15 PENG Z J. Structure design and analysis of high temperature dynamic seal[D]. Harbin:Harbin Institute of Technology, 2011:12-15 (in Chinese).
[21] JEFF H, LANDON M, CHRIS L, et al. The X-38 V-201 flap actuator mechanism[C]//Proceedings of the 37th Aerospace Mechanisms Symposium. Washington, D. C.:Johnson Space Center, NASA, 2004.
/
〈 | 〉 |