流体力学与飞行力学

亚轨道飞行器发动机故障下配平能力分析

  • 王文虎 ,
  • 韩冰
展开
  • 中北大学 机电工程学院, 太原 030051
王文虎,男,博士,讲师。主要研究方向:飞行器动力学与控制。Tel.:0351-3557452,E-mail:wwhu@nuc.edu.cn;韩冰,男,博士,讲师。主要研究方向:飞行动力学建模与仿真。Tel.:0351-3557452,E-mail:chihb2008@live.cn

收稿日期: 2015-12-28

  修回日期: 2016-08-22

  网络出版日期: 2016-08-26

Trim capacity analysis of suborbital reusable launch vehicle with engine failure

  • WANG Wenhu ,
  • HAN Bing
Expand
  • College of Mechatronic Engineering, North University of China, Taiyuan 030051, China

Received date: 2015-12-28

  Revised date: 2016-08-22

  Online published: 2016-08-26

摘要

为了分析亚轨道飞行器发动机故障下配平能力,将配平能力问题转换为线性等式/不等式混合方程组相容性判定问题。提出了将基于顶点投影法的相容性判定方法用于配平能力分析,验证了方法的准确性与计算效率。在故障下配平能力分析的总体框架下,分别对不同故障模式下故障发生时刻、整个空域配平能力进行分析,给出了配平能力不足时的应急策略。仿真结果表明,该方法能够快速地计算故障下不可配平区域、分析配平能力对可飞区域的影响,对故障后任务中止策略、任务中止轨迹优化等研究具有重要的参考价值。

本文引用格式

王文虎 , 韩冰 . 亚轨道飞行器发动机故障下配平能力分析[J]. 航空学报, 2016 , 37(12) : 3646 -3656 . DOI: 10.7527/S1000-6893.2016.0240

Abstract

In order to analyze the trim capacity of the suborbital reusable launch vehicle with engine failure, the problem of trim capacity is converted to the problem of compatibility decision of linear equality/inequality mixture equations. A method based on vertex-projection is proposed and used in trim capacity analysis. The accuracy and efficiency of the method are verified. In the framework of trim capacity analysis, the trim capacities at failure-time and for state-space under different failure modes are analyzed respectively. Moreover, contingency strategy is given in the case that trim capacity is insufficient. Simulation results indicate that the method can rapidly calculate non-trimmable region, and analyze the influence of trim capacity on flyable region. These results have important reference values for abort strategy and abort trajectory optimization.

参考文献

[1] GONZALEZ P. Influence of the abort capability in reusable systems reliabilit-FESTIP results overview:AIAA-1999-4928[R]. Reston:AIAA, 1999.
[2] 李新国, 王文虎, 王晨曦. 亚轨道飞行器上升段故障模式分析与仿真[J]. 飞行力学, 2014, 32(3):235-238. LI X G, WANG W H, WANG C X. Failure mode analysis and simulation of ascent trajectory for suborbital reusable launch vehicle[J]. Flight Dynamics, 2014, 32(3):235-238(in Chinese).
[3] HANSON J M. A plan for advanced guidance and control technology for 2nd generation reusable launch vehicles:AIAA-2002-4557[R]. Reston:AIAA, 2002.
[4] 陈永刚. 亚轨道飞行器控制系统设计[D]. 西安:西北工业大学, 2008:14-15. CHEN Y G. Control system design of the sub-orbital vehicle[D]. Xi'an:Northwestern Polytechnical University, 2008:14-15(in Chinese).
[5] JACKSON M C, HU H. Autonomous ascent abort planning applied to military and civilian space launch vehicles:AIAA-2004-6586[R]. Reston:AIAA, 2004.
[6] SHAFFER P J. Optimal trajectory reconfiguration and retargeting for the X-33 reusable launch vehicle[D]. Monterey, CA:Naval Postgraduate School, 2004:21-25.
[7] FAHROO F, DOMAN D. A direct method for approach and landing trajectory reshaping with failure effect estimation:AIAA-2004-4772[R]. Reston:AIAA, 2004.
[8] SHAFFER P J, ROSS I M, OPPENHEIMER M W, et al. Optimal trajectory reconfiguration and retargeting for a reusable launch vehicle:AIAA-2005-6148[R]. Reston:AIAA, 2005.
[9] SHAFFER P J, ROSS I M, OPPENHEIMER M W, et al. Fault-tolerant optimal trajectory generation for reusable launch vehicles[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(6):1794-1802.
[10] 解永锋. 亚轨道飞行器应急返回与轨道重构技术研究[D]. 西安:西北工业大学, 2011:135-158. XIE Y F. Research on emergency return and trajectory reshaping of suborbital reusable launch vehicle[D]. Xi'an:Northwestern Polytechnical University, 2011:135-158(in Chinese).
[11] 王娟, 刘小雄, 孙逊, 等. 基于优化配平的机翼故障飞机飞行性能分析[J]. 计算机工程与应用, 2014, 50(23):229-233. WANG J, LIU X X, SUN X, et al. Flight performance analysis for aircraft with wing faults based on optimization of trimming[J]. Computer Engineering and Applications, 2014, 50(23):229-233(in Chinese).
[12] PARADISE J A. Adaptable method of managing jets and aerosurfaces for aerospace vehicle control[J]. Journal of Guidance, Control and Dynamics, 1991, 14(1):44-50.
[13] JOHANSEN T A, FOSSEN T I, BERGE S P. Constrained nonlinear control allocation with singularity avoidance using sequential quadratic programming[J]. IEEE Transactions on Control Systems Technology, 2004, 12(1):211-216.
[14] 徐方暖. 亚轨道飞行器上升段虚拟样机设计[D]. 西安:西北工业大学, 2008:24-35. XU F N. Virtual prototype design of the ascent of suborbital launch vehicle[D]. Xi'an:Northwestern Polytechnical University, 2008:24-35(in Chinese).
[15] 谭政. 亚轨道可重复使用运载器控制律研究[D]. 西安:西北工业大学, 2009:13-22. TAN Z. Research on flight control laws of suborbital reusable launch vehicle[D]. Xi'an:Northwestern Polytechnical University, 2009:13-22(in Chinese).
[16] 宋恩民, 黄文奇. 判断具有多线性约束条件的凸空间是否为空的交边算法[J]. 计算机学报, 1996, 19(9):704-708. SONG E M, HANG W Q. An intersecting-side algorithm to determine whether convex regions bounded by multiple constraints are empty[J]. Chinese Journal of Computers, 1996, 19(9):704-708(in Chinese).
[17] 任世军, 洪炳熔, 梁庆姿. 判定线性不等式构成的凸集是否空集的位置算法[J]. 哈尔滨工业大学学报, 2000, 32(2):121-124. REN S J, HONG B R, LIANG Q Z. A point positioning algorithm to determine whether convex regions bounded by multiple linear constraints are empty[J]. Journal of Harbin Institute of Technology, 2000, 32(2):121-124(in Chinese).
[18] 任世军. 判定线性不等式围成的空间是否为空的梯度快速算法[J]. 哈尔滨工业大学学报, 2006, 38(9):1441-1445. REN S J. Fast projection algorithm to determine the emptiness of regions bounded by linear constraints[J]. Journal of Harbin Institute of Technology, 2006, 38(9):1441-1445(in Chinese).

文章导航

/