超大直径网格加筋筒壳快速屈曲分析方法
收稿日期: 2016-04-27
修回日期: 2016-07-06
网络出版日期: 2016-08-15
基金资助
国家“973”计划(2014CB049000);国家自然科学基金(11372062,11402049);中国博士后科学基金(2015T80246);高等学校学科创新引智计划(B14013)
A rapid buckling analysis method for large-scale grid-stiffened cylindrical shells
Received date: 2016-04-27
Revised date: 2016-07-06
Online published: 2016-08-15
Supported by
National Basic Research Program of China (2014CB049000); National Natural Science Foundation of China (11372062, 11402049); China Postdoctoral Science Foundation (2015T80246); "111" Project (B14013)
针对新一代重型运载火箭及大型飞机中存在的超大直径网格加筋壳结构,提出了一种快速屈曲分析方法。首先,基于渐进均匀化法的快速数值实现方法和瑞利-里兹法建立了快速屈曲分析框架,并通过与算例中等效刚度法屈曲载荷结果进行比较,验证了本文方法具有较高的预测精度。然后,对比了3种结构尺寸下网格加筋壳屈曲分析效率,结果表明本文方法不受结构尺寸影响,平均计算时间仅为6 s,凸显了其用于超大直径结构分析的高效性。进而,基于本文方法对4种传统加筋构型及2种新型多级加筋构型进行屈曲载荷评估,其预测误差均在3.0%以内,表现出广泛的构型适用性。在此基础上,通过优化设计的方法对比了上述6种加筋构型的承载效率,优化结果表明本文提出的多级三角型加筋构型最具承载优势,相较于初始方案取得了82.2%的承载增幅,可作为一种新型超大直径网格加筋壳结构储备。
王博 , 田阔 , 郑岩冰 , 郝鹏 , 张可 . 超大直径网格加筋筒壳快速屈曲分析方法[J]. 航空学报, 2017 , 38(2) : 220379 -220387 . DOI: 10.7527/S1000-6893.2016.0209
A rapid buckling analysis method is proposed in this paper for large-scale grid-stiffened cylindrical shells used in heavy-lift launch vehicles and large aircrafts. The analysis framework is established by combining asymptotic homogenization method with Rayleigh-Ritz method. A comparison with the buckling load results by smeared stiffener method demonstrates the high prediction accuracy of the proposed method. Evaluation of the analysis efficiency of grid-stiffened cylindrical shells in three different model scales shows that the average computational time by rapid buckling analysis method is only 6 s and which is not inftuenced by the model scale, highlighting the efficiency of the proposed method for large-scale structures. The widespread grid applicability of this method for four traditional grid types and two complicated hierarchical grid types is validated, and their prediction errors are all below 3.0%. Optimizations are performed to compare the load-carrying efficiency of these six grid types. Optimization results illustrate that the proposed hierarchical triangle grid type achieves an increase of load-carrying efficiency by 82.2% than the initial design, and can be considered as an innovative grid type for large-scale grid-stiffened cylindrical shells.
[1] LÉNÉ F, DUVAUT G, OLIVIER-MAILHÉ M, et al. An advanced methodology for optimum design of a composite stiffened cylinder[J]. Composite Structures, 2009, 91(4):392-397.
[2] WU H, YAN Y, YAN W, et al. Adaptive approximation-based optimization of composite advanced grid-stiffened cylinder[J]. Chinese Journal of Aeronautics, 2010, 23(4):423-429.
[3] 吴振强, 程昊, 张伟, 等. 热环境对飞行器壁板结构动特性的影响[J]. 航空学报, 2013, 34(2):334-342. WU Z Q, CHENG H, ZHANG W, et al. Effects of thermal environment on dynamic properties of aerospace vehicle panel structures[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):334-342(in Chinese).
[4] SHI S S, SUN Z, REN M F, et al. Buckling resistance of grid-stiffened carbon-fiber thin-shell structures[J]. Composites Part B:Engineering, 2013, 45(1):888-896.
[5] WANG B, HAO P, LI G, et al. Generatrix shape optimization of stiffened shells for low imperfection sensitivity[J]. Science China Technological Sciences, 2014, 57(10):2012-2019.
[6] 马建峰, 陈五一, 赵岭, 等. 基于蜻蜓膜翅结构的飞机加强框的仿生设计[J]. 航空学报, 2009, 30(3):562-569. MA J F, CHEN W Y, ZHAO L, et al. Bionic design of aircraft reinforced frame based on structure of dragonfly wing[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3):562-569(in Chinese).
[7] 王博, 田阔, 郝鹏, 等. 多级加筋板结构承载性能与缺陷敏感度研究[J]. 固体火箭技术, 2014, 37(3):408-412. WANG B, TIAN K, HAO P, et al. Load-carrying capacity and imperfection-sensitivity analysis of hierarchical stiffened panels[J]. Journal of Solid Rocket Technology, 2014, 37(3):408-412(in Chinese).
[8] 倪杨, 徐元铭. 金属次加筋结构的单轴压载稳定性优化[J]. 航空学报, 2015, 36(5):1511-1519. Ni Y, XU Y M. Stability of metallic sub-stiffened structure and its optimization under uniaxial loading[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1511-1519(in Chinese).
[9] WANG B, TIAN K, HAO P, et al. Hybrid analysis and optimization of hierarchical stiffened plates based on asymptotic homogenization method[J]. Composite Structures, 2015, 132(11):136-147.
[10] HAO P, WANG B, LI G, et al. Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method[J]. Thin-Walled Structures, 2014, 82:46-54.
[11] QUINN D, MURPHY A, GLAZEBROOK C. Aerospace stiffened panels initial sizing with novel skin sub-stiffening features[J]. International Journal of Structural Stability and Dynamics, 2013, 12(5):531-542.
[12] HAO P, WANG B, TIAN K, et al. Integrated optimization of hybrid-stiffness stiffened shells based on sub-panel elements[J]. Thin-Walled Structures, 2016, 103:171-182.
[13] REN M F, LI T, HUANG Q Z, et al. Numerical investigation into the buckling behavior of advanced grid stiffened composite cylindrical shell[J]. Journal of Reinforced Plastics and Composites, 2014, 33(16):1508-1519.
[14] WANG B, HAO P, LI G, et al. Two-stage size-layout optimization of axially compressed stiffened panels[J]. Structural and Multidisciplinary Optimization, 2014, 50(2):313-327.
[15] KIDANE S, LI G Q, HELMS J, et al. Buckling load analysis of grid stiffened composite cylinders[J]. Composites Part B:Engineering, 2003, 34(1):1-9.
[16] JAUNKY N, KNIGHT N F, AMBUR D R. Formulation of an improved smeared stiffener theory for buckling analysis of grid-stiffened composite panels[J]. Composites Part B:Engineering, 1996, 27(5):519-526.
[17] ZHANG B M, ZHANG J F, WU Z J, et al. A load reconstruction model for advanced grid-stiffened composite plates[J]. Composite Structure, 2008, 82(4):600-608.
[18] NAMPY S N, SMITH E C. Stiffness analysis of closed cross-section composite grid-stiffened cylinders[C]//51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural dynamics, and Materials conference. Reston:AIAA, 2010:1-3.
[19] MARTINEZ O A, SANKER B V, HAFTKA R, et al. Micromechanical analysis of composite corrugated-core sandwich panels for integral thermal protection systems[J]. AIAA Journal, 2007, 45(9):2323-2336.
[20] LEE C Y, YU W B. Homogenization and dimensional reduction of composite plates with in-plane heterogeneity[J]. International Journal of Solids and Structures, 2011, 48(10):1474-1484.
[21] CHENG G D, CAI Y W, XU L. Novel implementation of homogenization method to predict effective properties of periodic materials[J]. Acta Mechanica Sinica, 2013, 29(4):550-556.
[22] CAI Y W, XU L, CHENG G D. Novel numerical implementation of asymptotic homogenization method for periodic plate structures[J]. International Journal of Solids and Structures, 2014, 51(1):284-292.
[23] HAO P, WANG B, LI G, et al. Hybrid framework for reliability-based design optimization of imperfect stiffened shells[J]. AIAA Journal, 2015, 53(10):2878-2889.
/
〈 | 〉 |