固体力学与飞行器总体设计

基于弹簧质量模型的复合材料螺接修理载荷传递计算方法

  • 谢宗蕻 ,
  • 李想 ,
  • 杨淋雅 ,
  • 吴师
展开
  • 1. 西北工业大学 航天学院, 西安 710072;
    2. 中国航空工业集团公司 第一飞机设计研究院, 西安 710089
谢宗蕻,男,博士,教授,博士生导师。主要研究方向:复合材料结构分析与设计。Tel.:029-88460405,E-mail:xzhae@nwpu.edu.cn;李想,男,博士研究生。主要研究方向:复合材料接头分析与设计。Tel.:029-88460405,E-mail:895208876@qq.com;杨淋雅,女,硕士,助理工程师。主要研究方向:复合材料的多尺度分析与结构强度分析。Tel.:029-86832811,E-mail:gaoning91@163.com;吴师,男,硕士研究生。主要研究方向:复合材料结构强度分析与设计。Tel.:029-88460405,E-mail:wuushi@foxmail.com

收稿日期: 2016-06-07

  修回日期: 2016-07-15

  网络出版日期: 2016-08-15

基金资助

国家自然科学基金(U1233202)

A calculation method for load transfer in bolted repair of composite laminates based on spring-mass model

  • XIE Zonghong ,
  • LI Xiang ,
  • YANG Linya ,
  • WU Shi
Expand
  • 1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. The First Aircraft Institute, Aviation Industry Corporation of China, Xi'an 710089, China

Received date: 2016-06-07

  Revised date: 2016-07-15

  Online published: 2016-08-15

Supported by

National Natural Science Foundation of China (U1233202)

摘要

复合材料螺接修理具有操作简便,对连接件表面处理的要求不高,施工快速、性能可靠等优点,在复合材料的临时修理、尤其是战伤修理中应用较为广泛。然而其修理设计过程较为复杂,难以满足工程快速定参的需要。在螺接接头弹簧质量模型的基础上,针对蒙皮和补片等宽的情况,提出了一种复合材料螺接修理结构载荷传递比例计算方法。通过引入载荷按刚度分配的原则对模型进行修正,将模型进一步推广到蒙皮宽度大于补片宽度的情况。然后讨论了模型中不同弹簧刚度的计算方法。给出了采用细观力学方法以及均匀化方法等计算含损伤蒙皮等效刚度的计算方法,推导得到了规则排列多列螺栓连接中各排螺栓等效刚度的计算方法,并证明该刚度满足叠加原理。最后,以含圆形损伤孔的复合材料蒙皮板的螺接修理问题为例,对模型进行了考核,并与有限元法(FEM)预测结果进行了对比。结果表明:模型预测结果与有限元结果吻合较好,预测误差最大为7.7%。采用该模型可以高效、准确地实现复合材料螺接修理的分析设计。

本文引用格式

谢宗蕻 , 李想 , 杨淋雅 , 吴师 . 基于弹簧质量模型的复合材料螺接修理载荷传递计算方法[J]. 航空学报, 2016 , 37(12) : 3742 -3751 . DOI: 10.7527/S1000-6893.2016.0211

Abstract

Composite bolted repair provides the advantages of easy operation, fast processing and reliable performance, making it a preferable repair method for damaged composite structure, especially for battle damage repair. However, the repair design process is complex, and it is difficult to meet the need for rapid determination of parameters. In this paper, a simple method for estimate the load transfer in composite bolted repair is proposed based on the spring-mass model. The skin and the patch are first assumed to be of the same width. The model is then modified and applied to the bolted repair joint where the width of the skin is larger than that of the patch by introducing the principle of load transfer in materials according to their stiffness. The calculation method for equivalent stiffness of the damaged skin is discussed integrating the micromechanical method and the homogenization method. The calculation method for the equivalent bolt stiffness is given and proven to meet the principle of superposition for regular arrangement of bolts. The proposed method is validated by applying it to analyze the repair of damaged composite skin plate with a circular hole. The method is also compared with the finite element method (FEM). The results show that the predicted results by the proposed method agree well with those by the FEM, with the maximum error being 7.7%. The model could be used for efficient and accurate design and analysis of composite bolted repair joint.

参考文献

[1] 聂恒昌, 谭日明, 郭霞, 等. 复合材料层合板机械连接修理拉伸性能[J]. 北京航空航天大学学报, 2016, 42(2):318-327. NIE H C, TAN R M, GUO X, et al. Tensile performances of mechanically fastened repairs of composite laminates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2):318-327(in Chinese).
[2] 杜奎, 黎增山, 何为, 等. 机械连接修理对圆孔应力集中系数影响研究[C]//第十四届中国科协年会第11分会场:低成本、高性能复合材料发展论坛论文集. 北京:中国科学技术协会, 2012:22-27. DU K, LI Z S, HE W, et al. The influence of mechanical connection repair for circle hole stress concentration coefficient[C]//Proceedings of the 14th Annual Meeting of China Association for Science Technology 11th Session:Forum on Development of Low Cost, High Performance Composite Materials. Beijing:China Association of Science and Technology, 2012:22-27(in Chinese).
[3] 赵美英, 万小朋, 刘浩. 复合材料螺接修补参数优化[J]. 航空学报, 2001, 22(5):458-460. ZHAO M Y, WAN X P, LIU H. Optimization of composite patch bolted repairing parameters[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(5):458-460(in Chinese).
[4] BORTMAN J, SZABO B A. Analysis of fastened structural connections[J]. AIAA Journal, 1992, 30(11):2758-2764.
[5] SHI G Q, POON C, XIONG Y X. Finite element design and analysis of a bolted patch repair for composites[C]//42nd AIAA/ASME/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2001:1-10.
[6] BARUT A, GUVEN I, MADENCI E. An analytical method for evaluating bolted joint repairs in composite structures[C]//52nd AIAA/ASME/ASC Structures, St-ructural Dynamics and Materials Conference. Reston:AIAA, 2011:1-15.
[7] KRADINOV V, HANAUSKA J, BARUT A, et al. Bolted patch repair of composite panels with a cutout[J]. Composite Structures, 2002, 56(4):423-444.
[8] ZHANG J M. Design and analysis of mechanically fastened composite joints and repairs[J]. Engineering Analysis with Boundary Elements, 2001, 25(6):431-441.
[9] TATE M B, ROSENFELD S J. Preliminary investigation of the loads carried by individual bolts in bolted joints:NACA TN-1051[R]. Washington, D.C.:NACA, 1946.
[10] NELSON W D, BUNIN B L, HART-SMITH L J. Critical joints in large composite aircraft structures:NASA CR-3710[R]. Washington, D.C.:NASA, 1983.
[11] MCCARTHY M A, MCCARTHY C T, PADHI G S. A simple method for determining the effect of bolt-hole clearance on load distribution in single-column multi-bolt composite joints[J]. Composite Structures, 2006, 73(1):78-87.
[12] MCCARTHY C T, GRAY P J. An analytical model for the prediction of load distribution in highly torque multi-bolt composite joints[J]. Composite Structures, 2011, 93(2):287-298.
[13] 谢宗蕻, 李想, 郭家平, 等. 考虑间隙配合的复合材料钉载分配均匀化方法[J]. 复合材料学报, 2016, 33(4):806-813. XIE Z H, LI X, GUO J P, et al. Load distribution homogenization method of multi-bolt composite joint with consideration of bolt-hole clearance[J]. Acta Materiae Compositae Sinica, 2016, 33(4):806-813(in Chinese).
[14] HER S C, SHIE D L. The failure analysis of bolted repair on composite laminates[J]. International Journal of Solids and Structures, 1998, 35(15):1679-1693.
[15] 康健. 基于均匀化方法的材料参数化优化设计研究[D]. 大连:大连理工大学, 2006:15-25. KANG J. Parametric optimization design for material properties based-on homogenization method[D]. Dalian:Dalian University of Technology, 2006:15-25(in Chinese).
[16] HASSANI B, HINRON E. A review of homogenization and topology optimization II-Analytical and numerical solution of homogenization equations[J]. Computers & Structures, 1998, 69(6):719-738.
[17] 谢鸣九. 复合材料连接手册[M]. 上海:上海交通大学出版社, 2011:132-133, 172-173. XIE M J. Joints for composite materials book[M]. Shanghai:Shanghai Jiao Tong University Press, 2011:132-133, 172-173(in Chinese).
[18] SZABO B A, BASUŠKA I. Introduction to finite element analysis:Formulation, verification and validation[M]. West Sussex:John Wiley & Sons, Ltd., 2011:145-165.
[19] ACTIS R L, SZABO B A. Analysis of bonded and fastened repairs by the p-version of the finite-element method[J]. Computers & Mathematics with Applications, 2003, 46(1):1-14.

文章导航

/