固体力学与飞行器总体设计

考虑排放影响的飞机多学科优化设计

  • 刘楠溪 ,
  • 白俊强 ,
  • 华俊 ,
  • 郭斌 ,
  • 王晓鹏
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 中国航空研究院, 北京 100012;
    3. 上海机电工程研究所, 上海 201109

收稿日期: 2016-04-20

  修回日期: 2016-06-27

  网络出版日期: 2016-08-15

基金资助

国家级项目

Multidisciplinary design optimization incorporating aircraft emission impacts

  • LIU Nanxi ,
  • BAI Junqiang ,
  • HUA Jun ,
  • GUO Bin ,
  • WANG Xiaopeng
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Chinese Aeronautical Establishment, Beijing 100012, China;
    3. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China

Received date: 2016-04-20

  Revised date: 2016-06-27

  Online published: 2016-08-15

Supported by

National Level Project

摘要

随着民用航空运输业的发展,飞机对气候环境的影响越来越受到重视。为了满足未来飞机设计中经济性和环保性等指标,有必要在飞机概念设计阶段综合考虑成本和排放的影响。本文使用全球平均温度变化作为衡量飞机排放对气候影响的标准,分析了飞机巡航高度和速度对于排放物的影响。进一步,通过整合气动、重量、成本和排放等学科模型,建立了飞机概念设计阶段的多学科优化框架。基于该优化框架,以机翼平面形状、飞行速度和高度等参数为优化变量,分别以排放最小和成本最低为目标,进行了单目标和多目标优化设计研究。Pareto最优前沿的优化结果显示,单位排放成本的高低会影响成本相对于排放性能的变化趋势。

本文引用格式

刘楠溪 , 白俊强 , 华俊 , 郭斌 , 王晓鹏 . 考虑排放影响的飞机多学科优化设计[J]. 航空学报, 2017 , 38(1) : 220340 -220340 . DOI: 10.7527/S1000-6893.2016.0203

Abstract

Continuous increase in air traffic has caused a rise in public awareness of environmental impact of aircrafts, imposing the demand to satisfy the emission requirements for future aircraft concept design and development. In this paper, the average temperature variation is calculated to measure the environmental performance of different aircraft designs. It is firstly used to analyze the effects of cruise altitude and speed variation on the magnitudes of climate impact due to different aircraft emissions, and is then integrated into an aircraft design optimization framework at the conceptual stage, so as to optimize the minimum emission impacts and operating costs. The design variables considered in the optimization problems include aircraft configurations, engine parameters and cruise settings. Additionally, the impact of emission cost on the tradeoffs between economic and environmental performance are reflected on the Pareto-optimal front.

参考文献

[1] PENNER J E. Aviation and the global atmosphere:A special report of IPCC Working Groups I and Ⅲ in collaboration with the Scientific Assessment Panel to the Montreal Protocol on Substances that Deplete the Ozone Layer[M]. Cambridge:Cambridge University Press, 1999:18-20.
[2] FAN A. An assessment of environmental impacts of a NextGen implementation scenario and its implications on policy-making[D]. Cambridge:Massachusetts Institute of Technology, 2010:54-55.
[3] 闫国华, 吴鹏. 飞机完整航线二氧化碳排放量估算[J]. 装备制造技术, 2013(8):29-31. YAN G H, WU P. The aircraft the complete routes CO2 emissions estimate[J]. Equipment Manufacturing Technology, 2013(8):29-31(in Chinese).
[4] WUEBBLES D J, YANG H, HERMAN R. Climate metrics and aviation:Analysis of current understanding and uncertainties:Technical Report Theme 8[R]. Washington, D.C.:FAA Aviation Climate Change Research Initiative (ACCRI), 2008.
[5] HOUGHTON J T, JENKINS G J, EPHRAUMS J J. Climate change:The IPCC scientific assessment[M]. Cambridge:Cambridge University Press, 1990:364-366.
[6] SMITH S J, WIGLEY M L. Global warming potentials:1. Climatic implications of emissions reductions[J]. Climatic Change, 2000, 44(4):445-457.
[7] BERNTSEN T K, FUGLESTVEDT J S, JOSHI M M, et al. Response of climate to regional emissions of ozone precursors:Sensitivities and warming potentials[J]. Tellus Series B:Chemical & Physical Meteorology, 2005, 57B:283-304.
[8] SHINE K P, FUGLESTVEDT J S, HAILEMARIAM K, et al. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases[J]. Climatic Change, 2005, 68(3):281-302.
[9] LEE D S, FAHEY D W, FORSTER P M, et al. Aviation and global climate change in the 21st century[J]. Atmospheric Environment, 2009, 43(22-23):3520-3537.
[10] FUGLESTVEDT J S, SHINE K P, BERNTSEN T, et al. Transport impacts on atmosphere and climate:Metrics[J]. Atmospheric Environment, 2010, 44(37):4648-4677.
[11] LIM L, LEE D S, SAUSEN R, et al. Quantifying the effects of aviation on radiative forcing and temperature with a climate response model[C]//Proceedings of the TAC-Conference. Oxford:TAC, 2007:202-207.
[12] SAUSEN R, SCHUMANN U. Estimates of the climate response to aircraft CO2 and NOx emissions scenarios[J]. Climatic Change, 2000, 44(1-2):27-58.
[13] MARAIS K, LUKACHKO S P, JUN M, et al. Assessing the impact of aviation on climate[J]. Meteorologische Zeitschrift, 2008, 17(2):157-172.
[14] GREWE V, STENKE A. AirClim:An efficient tool for climate evaluation of aircraft technology[J]. Atmospheric Chemistry & Physics, 2008, 8(16):4621-4639.
[15] PONATER M, PECHTL S, SAUSEN R, et al. Potential of the cryoplane technology to reduce aircraft climate impact:A state-of-the-art assessment[J]. Atmospheric Environment, 2006, 40(36):6928-6944.
[16] ANTOINE N E, KROO I M. Framework for aircraft conceptual design and environmental performance studies[J]. AIAA Journal, 2005, 43(10):2100-2109.
[17] HENDERSON R P, MARTINS J R R A, PEREZ R E. Aircraft conceptual design for optimal environmental performance[J]. Aeronautical Journal, 2012, 116(1175):1-22.
[18] 王宇, 张帅. 面向客机概念设计的污染气体排放量估算方法[J]. 南京航空航天大学学报, 2013, 45(5):708-714. WANG Y, ZHANG S. Estimation method of pollutant gas emissions for civil jet conceptual design[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(5):708-714(in Chinese).
[19] WANG Y, YIN H, ZHANG S, et al. Multi-objective optimization of aircraft design for emission and cost reductions[J]. Chinese Journal of Aeronautics, 2014, 27(1):52-58.
[20] 王如华, 尹贵鲁, 何景武, 等. 快速CFD计算工具在民机概念优化设计中的应用[J]. 飞机设计, 2012(5):31-35. WANG R H, YIN G L, HE J W, et al. Fast CFD tool for civil aircraft conceptual design and optimization use[J]. Aircraft Design, 2012(5):31-35(in Chinese).
[21] 巨龙, 白俊强, 孙智伟, 等. 客机机翼环量分布的气动/结构一体化设计[J]. 航空学报, 2013, 34(12):2725-2732. JU L, BAI J Q, SUN Z W, et al. Integrated aero-structure design of circulation distribution for commercial aircraft wing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2725-2732(in Chinese).
[22] BAUGHCUM S L, TRITZ T G, HENDERSON S C, et al. Scheduled civil aircraft emission inventories for 1992:Database development and analysis:NASA Contractor Report 4700[R]. Washington, D.C.:NASA, 1996.
[23] ISIKVEREN A T. Quasi-analytical modelling and optimisation techniques for transport aircraft design[D]. Stockholm:Royal Institute of Technology, 2002:105-108.
[24] DALLARA S E. Aircraft design for reduced climate impact[D]. Palo Alto, CA:Stanford University, 2011:1-20.
[25] MORRELL P, LU C. The environmental cost implication of hub-hub versus hub by-pass flight networks[J]. Transportation Research Part D:Transport & Environment, 2007, 12(3):143-157.
[26] JOOS F, PRENTICE I C, SITCH S, et al. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios[J]. Global Biogeochemical Cycles, 2001, 15(4):891-907.
[27] BOUCHER O, REDDY M S. Climate trade-off between black carbon and carbon dioxide emissions[J]. Energy Policy, 2008, 36(1):193-200.
[28] SAUSEN R, ISAKSEN I, GREWE V, et al. Aviation radiative forcing in 2000:An update on IPCC (1999)[J]. Meteorologische Zeitschrift, 2005, 14(4):555-561.
[29] STORDAL F, MYHRE G, STORDAL E J G, et al. Is there a trend in cirrus cloud cover due to aircraft traffic?[J]. Atmospheric Chemistry & Physics, 2005, 5(4):2155-2162.
[30] KOEHLER M O, RADEL G, DESSENS O, et al. Impact of perturbations to nitrogen oxide emissions from global aviation[J]. Journal of Geophysical Research-Atmospheres, 2008, 113(D11):3078-3078.
[31] RADEL G, SHINE K P. Radiative forcing by persistent contrails and its dependence on cruise altitudes[J]. Journal of Geophysical Research-Atmospheres, 2008, 113(D7):1829-1836.
[32] GREWE V, STENKE A, PONATER M, et al. Climate impact of supersonic air traffic:An approach to optimize a potential future supersonic fleet-Results from the EU-project SCENIC[J]. Atmospheric Chemistry and Physics, 2007, 7(19):5129-5145.
[33] 廖琳雪, 叶叶沛, 党铁红. 欧洲市场直接运营成本(DOC)分析方法及其应用[J]. 民用飞机设计与研究, 2013(1):1-4. LIAO L X, YE Y P, DANG T H. The method and application of the DOC analysis in European market[J]. Civil Aircraft Design and Research, 2013(1):1-4(in Chinese).
[34] FORSTER P, FRECKLETON R S, SHINE K P. On aspects of the concept of radiative forcing[J]. Climate Dynamics, 1997, 13(7-8):547-560.
[35] FICHTER C. Climate impact of air traffic emissions in dependency of the emission location and altitude[D]. Manchester:Manchester Metropolitan University, 2009:25-26.
[36] GIERENS K M, LING L, ELEFTHERATOS K, et al. A review of various strategies for contrail avoidance[J]. Open Atmospheric Science Journal, 2008, 2(1):1-7.
[37] JENSEN L, HANSMAN R J, VENUTI J, et al. Commercial airline speed optimization strategies for reduced cruise fuel consumption[C]//Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2013:4289-4302.
[38] CRAMER E J, DENNIS J J, FRANK P D, et al. Problem formulation for multidisciplinary optimization[J]. SIAM Journal on Optimization, 1994, 4(4):754-776.
[39] 王宇. 基于不确定性的优化方法及其在飞机设计中的应用[D]. 南京:南京航空航天大学, 2010:19-20. WANG Y. Uncertainty-based optimization method and its application in aircraft design[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010:19-20(in Chinese).
[40] 丁松滨. 飞行性能与飞行计划[M]. 北京:科学出版社, 2013:93-96. DING S B. Flight performance and flight plan[M]. Beijing:Science Press, 2013:93-96(in Chinese).

文章导航

/