蜂窝密封泄漏特性理论与实验
收稿日期: 2016-06-07
修回日期: 2016-07-17
网络出版日期: 2016-08-03
基金资助
国家自然科学基金(11302133,51675351);辽宁省自然科学基金(2015020113)
Theoretical and experimental study of leakage characteristics of honeycomb seal
Received date: 2016-06-07
Revised date: 2016-07-17
Online published: 2016-08-03
Supported by
National Natural Science Foundation of China (11302133, 51675351); Natural Foundation of Liaoning Province (2015020113)
蜂窝密封的泄漏特性直接影响航空发动机的工作效率。本文采用理论分析与实验研究相结合的方法系统研究蜂窝密封的泄漏特性。建立了蜂窝密封流场特性CFD求解模型,数值分析了转速、进出口压比、蜂窝孔对边距、蜂窝孔深、蜂窝壁厚等因素对密封泄漏量的影响,揭示了蜂窝密封的封严机理。设计搭建了蜂窝密封泄漏特性实验台,实验研究了进出口压比、转速等因素对蜂窝密封泄漏特性的影响。数值分析与实验测试相互验证,在此基础上,考虑蜂窝密封泄漏特性影响因素,结合传统经典迷宫密封泄漏量Egli公式,构造了蜂窝密封泄漏量计算公式。研究结果表明,蜂窝密封的孔深、对边距和壁厚是通过影响蜂窝孔中涡系的发展和蜂窝孔的密度来影响泄漏量的。涡系发展的越充分,蜂窝孔的密度越大,蜂窝密封的泄漏量就越小;转速对蜂窝密封泄漏量影响较小;蜂窝密封的泄漏量随进出口压比的增加而增大,两者近似呈线性关系;随着蜂窝孔深度增加,蜂窝密封泄漏量先逐渐减小后逐渐趋于平稳;随着蜂窝孔对边距增加,密封泄漏量先减小,后出现了小幅度的增加;随着蜂窝壁厚的增加,蜂窝密封泄漏量先近似线性增大后缓慢增大。本文研究为蜂窝密封结构设计提供理论依据。
孙丹 , 王猛飞 , 艾延廷 , 肖忠会 , 孟继纲 , 李云 . 蜂窝密封泄漏特性理论与实验[J]. 航空学报, 2017 , 38(4) : 420512 -420512 . DOI: 10.7527/S1000-6893.2016.0214
The leakage characteristics of the honeycomb seal directly influence the working efficiency of the aero-engine. The leakage characteristics of honeycomb seal are analyzed using theoretical and experimental methods. The CFD model for the flow characteristic of honeycomb seal is developed to analyze the influence of rotational speed, inlet/outlet pressure ratio, subtense distance, cell depth, and wall thickness on seal leakage and to reveal the densification mechanism of honeycomb seal. The seal leakage test rig is designed and built to analyze the influence of the inlet/outlet pressure ratio and the rotational speed on leakage of honeycomb seal. Numerical analysis and experimental tests are conducted to verify each other. Based on the Egli formula for leakage quantity of the traditional classic labyrinth seal, the calculation formula for the leakage quantity of honeycomb seal is constructed, considering the factors influencing the leakage characteristics of honeycomb seal. The results show that the cell depth, subtense distance and wall thickness can influence the development of the vortex system and the density of honeycomb holes, and thereby influence the leakage. The more fully the vortex system develops and the greater the density of honeycomb hole is, the less honeycomb seal leakage will be. The results show that the rotational speed has little influence on the honeycomb seal leakage. The leakage linearly increase with the increasing inlet/outlet pressure ratio. With the increase of the honeycomb cell depth, the honeycomb seal leakage is firstly reduced and is then stabilized. With the increase of the subtense distance, the honeycomb seal leakage decreases initially, and then increases in small particle size range. With the increase of the wall thickness, the honeycomb seal leakage increases linearly initially, and then slowly increases. The results of this study can assist in improving the design of annular seal.
[1] 晏鑫, 李军, 丰镇平. 预旋对蜂窝密封和迷宫密封内流动传热特性影响[J]. 航空动力学报, 2009, 24(4):772-776. YAN X, LI J, FENG Z P. Influence of inletpreswirl on discharge and heat transfer characteristics of honeycomb and smooth labyrinth seals[J]. Journal of Aerospace Power, 2009, 24(4):772-776 (in Chinese).
[2] CHILDS D W, ELROD D, HALE K. Annular honeycomb seals:Test results for leakage and rotor-dynamic coefficients; comparisons to labyrinth and smooth configurations[J]. Journal of Tribology, 1989, 111(2):502-511.
[3] 张毅, 曹丽华, 索付军. 蜂窝密封泄漏流动特性影响因素的数值研究[J]. 动力工程学报, 2013, 33(10):775-781. ZHANG Y, CAO L H, SUO F J. Numerical investigation on factors influencing leakage flow characteristics of honeycomb seals[J]. Journal of Chinese Society of Power Engineering, 2013, 33(10):775-781 (in Chinese).
[4] MIRKO M, COSIMO B, DANIELE M, et al. Flat plate honeycomb seals friction factor analysis[J]. Journal of Engineering for Gas Turbines and Power, 2015, 138(7):072505.1-072505.10.
[5] ALESSIO D, ANDREA R, ELENA C, et al. Numerical analysis of honeycomb labyrinth seals:Cell geometry and fin tip thickness impact on the discharge coefficients[C]//Proceedings of ASME Turbo Expo 2015:Turbine Technical Conference and Exposition, 2015.
[6] 索付军. 蜂窝密封内部耗散机理的数值研究[D]. 吉林:东北电力大学, 2013:10-15. SUO F J. Numerical investigation on the influence leakage flow characteristics of honeycomb seal[D]. Jilin:Northeast Dianli University, 2013:10-15 (in Chinese).
[7] 晏鑫, 李军, 丰镇平. 蜂窝密封内流动传热及转子动力特性的研究进展[J]. 力学进展, 2011, 41(2):201-216. YAN X, LI J, FENG Z P. Review of the discharge, heat transfer and rotor-dynamic characteristics of honeycomb seals[J]. Advanced in Mechanics, 2011, 41(2):201-216 (in Chinese).
[8] 吕江, 何立东, 王晨阳. 蜂窝密封在小功率汽轮机轴端密封上的应用[J]. 润滑与密封, 2015, 40(6):90-94. LV J, HE L D, WANG C Y. Application of honeycomb seal on shaft-end seal of low power steam turbines[J]. Lubrication Engineering, 2015, 40(6):90-94 (in Chinese).
[9] 李志刚, 宁霄, 晏鑫. 蜂窝面迷宫密封泄漏特性和鼓风加热特性研究[J]. 工程热物理学报, 2015, 36(6):1196-1200. LI Z G, NING X, YAN X. Investigation on leakage characteristics and windage heating of honeycomb labyrinth seal[J]. Journal of Engineering Thermophysics, 2015, 36(6):1196-1200 (in Chinese).
[10] HE L D, YUAN X, JIN Y. Experimental investigation of the sealing performance of honeycomb seals[J]. Chinese Journal of Aeronautics, 2011, 24(1):13-17.
[11] 李金波, 何立东. 蜂窝密封流场旋涡能量耗散的数值研究[J]. 中国电机工程学报, 2007, 27(32):67-71. LI J B, HE L D. Energy dissipation of vortexes in honeycomb seals using numerical simulation[J]. Proceedings of the CSEE, 2007, 27(32):67-71 (in Chinese).
[12] 孙丹, 王双, 艾延廷. 阻旋栅对密封静力与动力特性影响的数值分析与实验研究[J]. 航空学报, 2015, 36(9):3002-3011. SUN D, WANG S, AI Y T. Numerical and experimental research on performance of swirl brakes for the static and dynamic characteristics of seals[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):3002-3011 (in Chinese).
[13] STOKER H L. Determining and improving labyrinth seal performance in current and advanced high performance gas turbines:AGARD CP 273[R]. 1978.
[14] STOKER H, COX D, HOLLE G. Aerodynamic performance of conventional and advanced design labyrinth seal leakage with solid-smooth, abradable and honeycomb lands:NASA-CR-135307[R]. Washington, D.C.:NASA, 1997.
[15] SCHRAMM V, WILLENBORG K, KIM S. Influence of a honeycomb facing on the flow through a stepped labyrinth seal[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(1):140-146.
[16] KOOL G, BINGEN F, PAOLILLO R. High temperature, high speed seal test rig-design, build, and validation:AIAA-2005-3902[R]. Reston:AIAA, 2005.
[17] PAOLILLO R, VASHIST T K, CLOUD D, et al. Rotating seal rig experiments:Test results and analysis modeling[J]. ASME Turbo Expo 2006:Power for Land, Sea and Air, 2006, 32(10):1551-1559.
[18] 李军, 邓清华, 丰镇平. 蜂窝汽封和迷宫式汽封流动性能比较的数值研究[J]. 中国电机工程学报, 2005, 25(16):108-111. LI J, DENG Q H, FENG Z P. Comparison of the flow characteristics for the honeycomb and labyrinth seal using numerical simulation[J]. Proceedings of the CSEE, 2005, 25(16):108-111 (in Chinese).
[19] LI J, KONG S R, YAN X. Numerical investigation on leakage performance of the rotating labyrinth honeycomb seal[J]. Journal of Engineering for Gas Turbine and Power, 2010, 132(6):062501.1-062501.11.
[20] YAN X, LI J, SONG L M, et al. Investigations on the discharge and total temperature increase characteristics of the labyrinth seals with honeycomb and smooth lands[J]. Journal of Turbomachinery, 2009, 131(4):041009.1-041009.8.
[21] 陈秀秀, 晏鑫, 李军. 蜂窝叶顶密封对透平气动性能的影响研究[J]. 西安交通大学学报, 2016, 50(4):1-7. CHEN X X, YAN X, LI J. Effect of honeycomb shroud seals on aerodynamic performance of turbine stages[J]. Journal of Xi'an Jiaotong University, 2016, 50(4):1-7 (in Chinese).
[22] 李志刚, 李军, 丰镇平. 蜂窝密封流动特性的数值研究和泄漏量计算公式的构造[J]. 机械工程学报, 2011, 47(2):142-148. LI Z G, LI J, FENG Z P. Numerical investigation on discharge behavior and prediction formula establishment of leakage flow rate of honeycomb seal[J]. Journal of Mechanical Engineering, 2011, 47(2):142-148 (in Chinese).
[23] GAMAL A J M, VANCE J M. Labyrinth seal leakage tests:Tooth profile, tooth thickness, and eccentricity effects[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(1):012510.1-012510.11.
/
〈 | 〉 |