流体力学与飞行力学

基于后缘小翼的旋翼翼型动态失速控制分析

  • 马奕扬 ,
  • 招启军 ,
  • 赵国庆
展开
  • 1. 南京航空航天大学 直升机旋翼动力学国家级重点实验室, 南京 210016;
    2. 中航工业第一飞机设计研究院 总体气动所, 西安 710089

收稿日期: 2016-04-11

  修回日期: 2016-07-16

  网络出版日期: 2016-08-02

基金资助

国家自然科学基金(11272150,11572156);江苏省普通高校研究生科研创新计划项目(KYLX15_0244);江苏高校优势学科建设工程基金

Dynamic stall control of rotor airfoil via trailing-edge flap

  • MA Yiyang ,
  • ZHAO Qijun ,
  • ZHAO Guoqing
Expand
  • 1. National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. General and Aerodynamic Institute, The First Aircraft Institute of AVIC, Xi'an 710089, China

Received date: 2016-04-11

  Revised date: 2016-07-16

  Online published: 2016-08-02

Supported by

National Natural Science Foundation of China (11272150, 11572156); Jiangsu Innovation Program for Graduate Education (KYLX15_0244); Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

针对后缘小翼(TEF)的典型运动参数对旋翼翼型动态失速特性的控制进行了研究。发展了一套适用于带有后缘小翼控制的旋翼翼型非定常流动特性模拟的高效、高精度CFD方法。通过求解Poisson方程生成围绕旋翼翼型的黏性贴体和正交网格,为保证后缘小翼附近的网格生成质量,建立了基于翼型点重构的方法来描述后缘小翼的偏转运动;为克服变形网格方法可能导致网格畸变的不足,发展了一套适用于带有后缘小翼控制的旋翼翼型运动嵌套网格方法。基于非定常雷诺平均Navier-Stokes(URANS)方程、双时间法、Spalart-Allmaras(S-A)湍流模型和Roe-Monotone Upwind-centered Scheme for Conservation Laws(Roe-MUSCL)插值格式,发展了旋翼翼型非定常气动特性分析的高精度数值方法,并采用Lower-Upper Symmetric Gauss-Seidel(LU-SGS)隐式时间推进方法及并行技术提高计算效率。以有试验结果验证的HH-02翼型和SC1095翼型为算例,精确捕捉了动态失速状态下的气动力迟滞效应,验证了本文方法的有效性。着重针对SC1095旋翼翼型的动态失速状态开展后缘小翼的控制分析,提出了可以体现翼型升力、阻力及力矩综合特性的关系式PoPc,揭示了后缘小翼振荡频率、相位差和偏转幅值对动态失速特性影响的规律。研究结果表明:当后缘小翼偏转的相对运动频率为1.0,且小翼运动规律与翼型振荡规律之间的相位差为0°时,后缘小翼能够更好地抑制翼型动态失速现象;在此状态下,当偏转幅值为10°时,SC1095翼型最大阻力系数和最大力矩系数可以分别降低19%和27%。

本文引用格式

马奕扬 , 招启军 , 赵国庆 . 基于后缘小翼的旋翼翼型动态失速控制分析[J]. 航空学报, 2017 , 38(3) : 120312 -120312 . DOI: 10.7527/S1000-6893.2016.0220

Abstract

Control effects of typical motion parameters of trailing-edge flap (TEF) on the dynamic stall characteristics of rotor airfoil are investigated. A high-efficiency and high-precision CFD method for predicting the unsteady flow characteristics of rotor airfoil with TEF control is developed. The viscous and orthogonal body-fitted grids around the oscillatory rotor airfoil are regenerated by solving Poisson equations. To ensure the quality of the grids around TEF, a reconstruction of grid points on airfoil is conducted to describe the motion of TEF. Aiming at overcoming the shortcoming of deformable grid approach, which may result in the distortion of grid, a moving-embedded grid method is developed to predict the flowfield of the oscillatory airfoil with TEF control. Based on unsteady Reynolds averaged Navier-Stokes (URANS) equations, dual-time method, Spalart-Allmaras (S-A) turbulence model, and Roe-Monotone Upwind-centered Scheme for Conservation Laws (Roe-MUSCL) scheme, a high-precision CFD method for predicting the flowfield around airfoil is developed, and implicit Lower-Upper Symmetric Gauss-Seidel (LU-SGS) scheme and parallel techniques are adopted to improve computational efficiency. The dynamic stall cases of HH-02 and SC1095 rotor airfoils are calculated using the proposed method. It is demonstrated that the hysteresis effects are well captured, verifying the effectiveness of numerical simulation method. Focusing on the dynamic stall cases of SC1095 rotor airfoil, analyses on dynamic stall control via TEF are carried out. The function Po and Pc which can reflect the lift, drag and moment characteristics of airfoil are proposed. The effects of the non-dimensional frequency, the phase difference and the angular amplitude of the trailing-edge flap are revealed. The results indicate that dynamic stall phenomenon of an oscillatory airfoil could be significantly suppressed when relative motion frequency of the trailing-edge flap is 1.0 and the phase difference is about 0°. At this state, the maximum drag and negative moment coefficients of SC1095 airfoil can be reduced by about 19% and 27% respectively via TEF control when the angular amplitude is 10°.

参考文献

[1] CONLISK A T. Modern helicopter rotor aerodynamics[J]. Progress in Aerospace Sciences, 2002, 37(5):417-476.
[2] VIEIRA B A O, MAUGHMER M D. An evaluation of dynamic stall onset prediction methods for rotorcraft airfoil design:AIAA-2013-1093[R]. Reston:AIAA, 2013.
[3] GEISSLER W, RAFFEL M, DIETZ G, et al. Helicopter aerodynamics with emphasis placed on dynamic stall[M]. Heidelberg:Springer, 2007:199-204.
[4] CHOPRA I. Review of state of art of smart structures and integrated systems[J]. AIAA Journal, 2002, 40(11):2145-2187.
[5] CARR L. The effect of a leading-edge slat on the dynamic stall of an oscillating airfoil:AIAA-1983-2533[R]. Reston:AIAA, 1983.
[6] POST M L, CORKE T C. Separation control using plasma actuators:Dynamic stall vortex control on oscillating airfoil[J]. AIAA Journal, 2006, 44(12):3125-3135.
[7] ZHAO G Q, ZHAO Q J. Dynamic stall control optimization of rotor airfoil via variable droop leading-edge[J]. Aerospace Science & Technology, 2015, 43(6):406-414.
[8] JAWORSKI J W. Thrust and aerodynamic forces from an oscillating leading-edge flap[J]. AIAA Journal, 2012, 50(12):2928-2931.
[9] PECHAN T. Design and analysis of an active leading edge wing:AIAA-2013-01222[R]. Reston:AIAA, 2013.
[10] CHANDRASEKHARA M S. A review of compressible dynamic stall control principles and methods[C]//Proceedings of the Tenth Asian Congress of Fluid Mechanics. ACFM, 2004:1-6.
[11] FESZTY D, GILLIES E A, VEZZA M. Alleviation of airfoil dynamic stall moments via trailing-edge flap flow control[J]. AIAA Journal, 2004, 42(1):17-25.
[12] KRZYSIAK A, NARKIEWICZ J. Aerodynamic loads on airfoil with trailing-edge flap pitching with different frequencies[J]. Journal of Aircraft, 2006, 43(2):407-418.
[13] GERONTAKOS P, LEE T. Trailing-edge flap control of dynamic pitching moment[J]. AIAA Journal, 2012, 45(7):1688-1694.
[14] LEE T, SU Y Y. Unsteady airfoil with a harmonically deflected trailing-edge flap[J]. Journal of Fluids & Structures, 2011, 27(8):1411-1424.
[15] 王进, 杨茂, 陈凤明. 带后缘襟翼翼型的非定常气动特性数值仿真[J]. 计算机仿真, 2011, 28(2):88-92. WANG J, YANG M, CHEN F M. CFD simulation of unsteady aerodynamic of airfoil with trailing-edge flap[J]. Computer Simulation, 2011, 28(2):88-92(in Chinese).
[16] 刘洋, 向锦武. 后缘襟翼对直升机旋翼翼型动态失速特性的影响[J]. 航空学报, 2013, 34(5):1028-1035. LIU Y, XIANG J W. Effect of the trailing edge flap on dynamic stall performance of helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1028-1035(in Chinese).
[17] 王荣, 夏品奇. 多片后缘小翼对直升机旋翼桨叶动态失速及桨毂振动载荷的控制[J]. 航空学报, 2013, 34(5):1083-1091. WANG R, XIA P Q. Control of helicopter rotor blade dynamic stall and hub vibration loads by using multiple trailing edge flaps[J]. Acta Aeronautica et Astronautica Sinica, 2013,34(5):1083-1091(in Chinese).
[18] 王博, 招启军, 徐广, 等. 一种适合于旋翼前飞非定常流场计算的新型运动嵌套网格方法[J]. 空气动力学学报, 2012, 30(1):14-21. WANG B, ZHAO Q J, XU G, et al. A new moving-embedded grid method for numerical simulation of unsteady flow-field of the helicopter rotor in forward flight[J]. Acta Aerodynamica Sinica, 2012, 30(1):14-21(in Chinese).
[19] 赵国庆, 招启军, 王清. 旋翼翼型非定常动态失速特性的CFD模拟及参数分析[J]. 空气动力学学报, 2015, 33(1):72-81. ZHAO G Q, ZHAO Q J, WANG Q. Simulations and parametric analyses on unsteady dynamic stall characteristics of rotor airfoil based on CFD method[J]. Acta Aerodynamica Sinica, 2015, 33(1):72-81(in Chinese).
[20] MCALISTER K W, PUCCI S L, MCCROSKEY W J, et al. An experimental study of dynamic stall on advanced airfoil section. Volume 2:Pressure and force data:NASA TM-84245[R]. Washington, D.C.:NASA, 1982.

文章导航

/