流体力学与飞行力学

基于多物理场耦合的双脉冲发动机点火过程数值模拟

  • 李映坤 ,
  • 韩珺礼 ,
  • 陈雄 ,
  • 周长省 ,
  • 巩伦昆
展开
  • 1. 南京理工大学 机械工程学院, 南京 210094;
    2. 北京机电研究所, 北京 100083

收稿日期: 2016-05-09

  修回日期: 2016-07-17

  网络出版日期: 2016-08-01

基金资助

江苏省普通高校学术学位研究生科研创新计划(KYZZ15_0113)

Numerical simulation of the ignition transient of dual pulse motor based on multi-physics coupling

  • LI Yingkun ,
  • HAN Junli ,
  • CHEN Xiong ,
  • ZHOU Changsheng ,
  • GONG Lunkun
Expand
  • 1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. Beijing Institute of Electromechanical Technology, Beijing 100083, China

Received date: 2016-05-09

  Revised date: 2016-07-17

  Online published: 2016-08-01

Supported by

The Research Innovation Program for College Academic Graduates of Jiangsu Province (KYZZ15_0113)

摘要

为研究双脉冲固体火箭发动机Ⅱ脉冲点火瞬态过程,发展一套多物理场耦合求解器。流体控制方程基于有限体积法求解,时间推进采用双时间步LU-SGS(Lower Upper Symmetric Guass Seidel)方法;固体推进剂表面温度基于耦合传热方法计算;结构动力学运动方程基于有限元方法离散,采用经典的Newmark格式进行时间推进,流固耦合采用松耦合算法,并通过算例验证求解器的可靠性。计算结果表明:该求解器能够数值模拟Ⅱ脉冲启动过程中的点火药气体冲击、燃气非定常流动及金属膜片机械响应过程,获得金属膜片的破裂时间和压强;且随着点火质量流率增加,推进剂装药首次点燃时间和金属膜片破裂时间变短,膜片破裂压强降低;金属膜片破裂时间和压强不仅与作用在其表面的压强载荷大小相关,而且与压强载荷加载的过程相关;金属膜片厚度越薄,膜片破裂时间越短,膜片轴向位移越大,膜片破裂压强越低。

本文引用格式

李映坤 , 韩珺礼 , 陈雄 , 周长省 , 巩伦昆 . 基于多物理场耦合的双脉冲发动机点火过程数值模拟[J]. 航空学报, 2017 , 38(4) : 120409 -120409 . DOI: 10.7527/S1000-6893.2016.0212

Abstract

In order to study the second pulse ignition transient of a dual pulse solid rocket motor, a multi-physic solver is developed. The governing equations for unsteady compressible fluid flow are solved with dual time LU-SGS (lower upper symmetric Guass seidel) iterative algorithm by finite volume method. The conjugate heat transfer strategy is employed to calculate the propellant surface temperature. A finite element method is used to discretize the structural dynamic equation in space, whereas the temporal time integration is achieved with the classic Newmark algorithm. A loosely coupled algorithm is used for fluid structure interaction problems, and the reliability of the numerical approach is validated by a comparison with experimental cases. Results show that the multi-physics solver can simulate the impact of ignition gas, strong unsteady flow, and mechanical response of metal diaphragm. The burst time and burst pressure of metal diaphragm can be also acquired. Meanwhile, with the increase of the ignition mass flow rate, the first ignition time of propellant and the burst time of the diaphragm become shorter and the burst pressure of the diagram decreases. The burst time and burst pressure of metal diaphragm are not only related to the pressure load on the surface of diaphragm, but also to the history of the pressure load on it. With the decrease of thickness of metal diaphragm, the burst time of the diaphragm goes shorter, the burst pressure of diaphragm decreases, and the maximum horizontal displacement of the diaphragm increases.

参考文献

[1] NAUMANN K W, STADLER L. Double pulse solid rocket motor technology applications and technical solutions:AIAA-2010-6754[R]. Reston:AIAA, 2010.
[2] NISHⅡ S, FUKUDA K, KUBOTA N. Combustion tests of two stage pulse rocket motors:AIAA-1989-2426[R]. Reston:AIAA, 1989.
[3] CARRIER J L C, CONSTANTINOU T, HARRIS P G, et al. Dual-interrupted-thrust pulse motor[J]. Journal of Propulsion and Power, 1987, 3(4):308-312.
[4] DAHL H, JONES B. Demonstration of solid propellant pulse motor technologies:AIAA-1996-3157[R]. Reston:AIAA,1996.
[5] WANG C H, LIU Y, LIU Y B. Design and experimental studies on ceramic port cover for dual pulse motor[J]. Acta Astronautica, 2011, 68(11):1881-1890.
[6] SCHILLING S, TROUILLOT P, WEIGAND A. On the development and testing of a 120 mm caliber double pulse motor (DPM):AIAA-2004-3387[R]. Reston:AIAA, 2004.
[7] STADLER L J, HOFFMANN S, HUBER J, et al. The flight demonstration of the double pulse motor demonstrator MSA:AIAA-2010-6756[R]. Reston:AIAA, 2010.
[8] JAVED A, MANNA P, DEBASIS C. Numerical simulation of a dual pulse solid rocket motor flow field[J]. Defence Science Journal, 2012, 62(6):369-374.
[9] 孙娜, 娄永春, 孙长宏, 等. 某双脉冲发动机燃烧室两相流场数值分析[J]. 固体火箭技术, 2012, 35(3):335-338. SUN N, LOU Y C, SUN C H, et al. Numerical analysis of two-phase flow in combustion chamber of dual-pulse motor[J]. Journal of Solid Rocket Technology, 2012, 35(3):335-338 (in Chinese).
[10] 王春光, 任全彬, 田维平, 等. 脉冲发动机中金属膜片式隔舱动态破坏过程研究[J]. 固体火箭技术, 2013, 36(1):22-26. WANG C G, REN Q B, TIAN W P, et al. Research on the process of dynamic failure of metal diaphragm pulse separation device in pulse motor[J]. Journal of Solid Rocket Technology, 2013, 36(1):22-26 (in Chinese).
[11] 石瑞, 王长辉, 苌艳楠. 双脉冲固体发动机铝膜隔板设计和试验研究[J]. 固体火箭技术, 2013, 36(2):190-194. SHI R, WANG C H, CHANG Y N. Design and experimental study on aluminum clapboard of dual-pulse rocket motor[J]. Journal of Solid Rocket Technology, 2013, 36(2):190-194 (in Chinese).
[12] 刘伟凯, 惠博. 双脉冲发动机中金属膜片式隔舱设计方法[J]. 固体火箭技术, 2013, 36(4):486-491. LIU W K, HUI B. Research on designing method of metal diaphragm PSD in double pulse solid rocket motor[J]. Journal of Solid Rocket Technology, 2013, 36(4):486-491 (in Chinese).
[13] 刘伟凯, 何国强, 王春光. 双脉冲发动机中金属膜片动态与静态打开对比分析[J]. 推进技术, 2014, 35(9):1259-1264. LIU W K, HE G Q, WANG C G. Research on dynamic and static opening of metal diaphragm in double pulse solid rocket motor[J]. Journal of Propulsion Technology, 2014, 35(9):1259-1264 (in Chinese).
[14] 王伟, 李江, 王春光, 等. 隔舱式双脉冲发动机金属膜片设计与实验研究[J]. 推进技术, 2013, 34(8):1115-1120. WANG W, LI J, WANG C G, et al. Study on metal diaphragm of pulse separation device in dual pulse solid rocket motor[J]. Journal of Propulsion Technology, 2013, 34(8):1115-1120 (in Chinese).
[15] 李映坤, 韩珺礼, 陈雄, 等. 级间通道构型对双脉冲发动机燃烧室局部受热的影响[J]. 推进技术, 2014, 35(11):1503-1510. LI Y K, HAN J L, CHEN X, et al. Effects of two-stage pulse channel configurations on local heat transfer characteristics in combustion chamber of dual pulse motor[J]. Journal of Propulsion Technology, 2014, 35(11):1503-1510 (in Chinese).
[16] 陈雄, 李映坤, 刘锐, 等. 基于耦合传热的双脉冲发动机热防护层受热分析[J]. 推进技术, 2016, 37(1):83-89. CHEN X, LI Y K, LIU R, et al. Heating study of thermal protection layer in dual pulse motor based on the conjugate heat transfer method[J]. Journal of Propulsion Technology, 2016, 37(1):83-89 (in Chinese).
[17] 李映坤, 韩珺礼, 陈雄, 等. 基于嵌套网格的脉冲发动机喷管内流场数值模拟[J]. 固体火箭技术, 2014, 37(2):178-183. LI Y K, HAN J L, CHEN X, et al. Numerical simulation research of nozzle inner flow field for pulse motor based on dynamic chimera grid[J]. Journal of Solid Rocket Technology, 2014, 37(2):178-183 (in Chinese).
[18] 巩伦昆, 陈雄, 周长省, 等. 来流条件对固体燃料冲压发动机燃速及自持燃烧性能影响的仿真研究[J]. 航空学报, 2016, 37(5):1428-1439. GONG L K, CHEN X, ZHOU C S, et al. Numerical investigation on the effect of inlet flow condition on regression rate and self-sustained combustion of solid fuel ramjet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1428-1439 (in Chinese).
[19] MENTER F R. Two equation eddy viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[20] KIM K H, KIM C, RHO O H. Methods for the accurate computations of hypersonic flows:I. AUSMPW+ scheme[J]. Journal of Computational Physics, 2001, 174(1):38-80.
[21] 阎超. 计算流体力学方法及其应用[M]. 北京:北京航空航天大学出版社, 2006:160-164. YAN C. Computational fluid dynamics method and its application[M]. Beijing:Beihang University Press, 2006:160-164 (in Chinese).
[22] SMITH I M, GRIFFITHS D V. Programming the finite element method[M]. 4th ed. New York:John Wiley & Sons, 2005:465-480.
[23] LI Q, LIU P, HE G Q. Fluid-solid coupled simulation of the ignition transient of solid rocket motor[J]. Acta Astronautica, 2015, 110:180-190.
[24] JOHNSTON W A. Solid rocket motor internal flow during ignition[J]. Journal of Propulsion and Power, 1995, 11(3):489-496.
[25] LIU R, CHEN X, ZHOU C S, et al. A couple approach for a conjugate heat transfer investigation of the shape-change effects in a composite nozzle[J]. Numerical Heat Transfer, Part A:Applications, 2015, 68(11):1280-1305.
[26] 李伟, 马宝峰. 一种改进型松耦合方法在机翼摇滚计算中的应用[J]. 航空学报, 2015, 36(6):1805-1813. LI W, MA B F. A modified loosely-coupled algorithm for calculation of wing rock[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1805-1813 (in Chinese).
[27] GIORDANO J, JOURDAN G, BURTSCHELL Y, et al. Shock wave impacts on deforming panel, an application of fluid-structure interaction[J]. Shock Waves, 2005, 14(1-2):103-110.

文章导航

/