导航制导与控制

高超声速飞行器纵向大攻角非线性失稳分析与控制

  • 苏二龙 ,
  • 罗建军 ,
  • 闵昌万
展开
  • 1. 西北工业大学 航天飞行动力学技术重点实验室, 西安 710072;
    2. 中国运载火箭技术研究院 空间物理重点实验室, 北京 100076
苏二龙,男,博士。主要研究方向:高超声速飞行器动力学,制导与控制。E-mail:suerlong050251@163.com;罗建军,男,博士,教授,博士生导师。主要研究方向:航天飞行器制导,导航与控制。Tel.:029-88493350,E-mail:jjluo@nwpu.edu.cn;闵昌万,男,博士,研究员。主要研究方向:飞行器设计。Tel.:010-86747650,E-mail:minchangwan@126.com

收稿日期: 2016-05-10

  修回日期: 2016-05-27

  网络出版日期: 2016-07-12

Analysis and control of nonlinear loss of stability for longitudinal flight dynamics of hypersonic vehicle with high angle of attack

  • SU Erlong ,
  • LUO Jianjun ,
  • MIN Changwan
Expand
  • 1. Science and Technology on Aerospace Flight Dynamics Laboratory, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Science and Technology on Space Physics Laboratory, China Academy of Launch Vehicle Technology, Beijing 100076, China

Received date: 2016-05-10

  Revised date: 2016-05-27

  Online published: 2016-07-12

摘要

针对滑翔式高超声速飞行器大攻角纵向失稳问题,基于连续算法和分岔理论,求解并分析了多特征点单参数分岔图,对平衡分支的稳定性和突变点进行了分析。结合高超声速飞行器大包线飞行特性,求解并分析了双参数分岔,并计算了稳定分支曲面和不稳定分支曲面,从全包线范围揭示了高超声速飞行器大攻角失稳特性。为了实现高超声速飞行器的稳定控制,基于非线性动态逆和分阶思想,设计了非线性控制器,并计算了非线性开环闭环系统的全局特征根分布,结合所提出的一种基于连续算法的非线性闭环系统全局性能评估方法,评估并分析得出非线性控制器的有效性和较优的全局性能。最后,对闭环系统进行了时间历程仿真,进一步验证了非线性控制器的有效性。

本文引用格式

苏二龙 , 罗建军 , 闵昌万 . 高超声速飞行器纵向大攻角非线性失稳分析与控制[J]. 航空学报, 2016 , 37(S1) : 80 -90 . DOI: 10.7527/S1000-6893.2016.0172

Abstract

Bifurcation and continuation method is employed to address the issue of longitudinal loss of stability of high angle of attack of hypersonic glide vehicle. Based on the obtained codimension 1 equilibrium bifurcation branches presented in phase-parameter space, the stability of the branches and catastrophe are analyzed. The codimension 2 equilibrium bifurcation branches are then presented in phase-parameter space. The 3D surface of equilibrium for the full Mach number and angle of attack parameter space are given, including stable and unstable branch surfaces. The nonlinear dynamic inversion is utilized to design the controller for longitudinal dynamics. The overall open-loop and closed-loop eigenvalue are plotted. A new evaluation strategy for nonlinear closed-loop dynamics is proposed to evaluate the overall performance of the designed controller. Time-history simulation is combined to verify the efficacy and high performance of the controller.

参考文献

[1] 叶友达. 近空间高速飞行器气动特性研究与布局设计优化[J]. 力学进展, 2009, 39(6):683-694. YE Y D. Study on aerodynamics characteristics and design optimization for high speed near space vehicles[J]. Advance in Mechanics, 2009, 39(6):683-694 (in Chinese).
[2] 张鲁民. 航天飞机空气动力学分析[M]. 北京:国防工业出版社, 2009:30-40. ZHANG L M. Analysis of space shuttle aerodynamics[M]. Beijing:National Defense Industry Press, 2009:30-40 (in Chinese).
[3] CARROLL J V, MEHRA R K. Bifurcation analysis of nonlinear aircraft dynamics[J]. Journal of Guidance, Control, and Dynamics, 1982, 5(5):529-536.
[4] GOMAN M G, KHRAMTSOVSKY A V. Application of continuation and bifurcation methods to the design of control systems[J]. Philosophical Transactions of the Royal Society of London, Series A:Mathematical, Physical and Engineering Sciences, 1998, 356 (1745):2277-2295.
[5] PASHILKAR A A, PRADEEP S. Computation of flight mechanics parameters using continuation techniques[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2):324-329.
[6] AMIT K K, JATINDER S. Aircraft design using constrained bifurcation and continuation method[J]. Journal of Aircraft, 2014, 51(5):1647-1652.
[7] LEE H P, CHANG M, KAISER M K. Flight dynamics and stability and control characteristics of the X-33 technology demonstrator vehicle:AIAA-1998-4410[R]. Reston:AIAA, 1998.
[8] PHILIP C. An entry flight controls analysis for a reusable launch vehicle:AIAA-2000-1046[R]. Reston:AIAA, 2000.
[9] TANCREDI U, GRASSI M, VERDE L, et al. Aerodynamics uncertainties compliance with desired lateral-directional dynamics for an unmanned space vehicle:AIAA-2005-6962[R]. Reston:AIAA, 2005.
[10] 祝立国, 王永丰, 庄逢甘, 等. 高速高机动飞行器的横航向偏离预测判据分析[J]. 宇航学报, 2007, 28 (6):1550-1553. ZHU L G, WANG Y F, ZHUANG F G, et al. The lateral-directional departure criteria analysis of high-speed and high maneuverability aircraft[J]. Journal of Astronautics, 2007, 28(6):1550-1553 (in Chinese).
[11] 祝立国, 王永丰, 庄逢甘, 等. Weissman图的产生、发展及其在再入航天飞行器气动布局设计中的应用[J]. 宇航学报, 2009, 30 (1):13-17. ZHU L G, WANG Y F, ZHUANG F G, et al. The derivation, development of Weissman chart and applications on configuration design of reentry vehicle[J]. Journal of Astronautics, 2009, 30(1):13-17 (in Chinese).
[12] 高清, 赵俊波, 李潜. 类HTV-2横侧向稳定性研究[J]. 宇航学报, 2014, 35(6):657-662. GAO Q, ZHAO J B, LI Q. Study on lateral-directional stability of HTV-2 like configuration[J]. Journal of Astronautics, 2014, 35(6):657-662 (in Chinese).
[13] 高清, 李建华, 李潜. 升力体高超声速飞行器横向气动特性研究[J]. 实验流体力学, 2015, 29(1):43-48. GAO Q, LI J H, LI Q. Study on lateral stability of hypersonic lifting-configurations[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1):43-48 (in Chinese).
[14] KUZNETSOV Y A. Elements of applied bifurcation theory[M]. 3rd ed. New York:Springer-Verlag, 2004.
[15] STEPHEN J G, MARK H L, SIMON A N. Upset dynamics of an airliner model:A nonlinear bifurcation analysis[J]. Journal of Aircraft, 2013, 50(6):1832-1842.

文章导航

/