导航制导与控制

临近空间无人飞行器多余度容错导航系统设计

  • 吴永亮 ,
  • 蔡亚男 ,
  • 宝音贺西 ,
  • 熊立川 ,
  • 刘盛川
展开
  • 1. 成都飞机设计研究所, 成都 610091;
    2. 清华大学 航天航空学院, 北京 100084;
    3. 电子科技大学 航空航天学院, 成都 611731
吴永亮,男,博士,高级工程师。主要研究方向:无人机飞控系统设计与综合。Tel.:028-65503838,E-mail:wuyongliang@buaa.edu.cn;蔡亚,男,女,硕士。主要研究方向:无人机导航、无人机飞控系统设计与综合。Tel.:028-65503838,E-mail:caiyanan123@163.com;宝音贺西,男,博士,教授。主要研究方向:航天器动力学与控制。Tel.:010-62795211,E-mail:baoyin@tsinghua.edu.cn;熊立川,男,研究员。主要研究方向:无人机导航、制导与控制系统设计与综合。Tel.:028-65503838,E-mail:liulu861210@yahoo.com.cn;刘盛川,男,研究员。主要研究方向:无人机导航、制导与控制系统设计与综合。Tel.:028-65503838,E-mail:itmrobot@163.com

收稿日期: 2016-04-22

  修回日期: 2016-05-27

  网络出版日期: 2016-07-12

Design of redundant fault-tolerant navigation system for near space UAV

  • WU Yongliang ,
  • CAI Ya'nan ,
  • BAOYIN Hexi ,
  • XIONG Lichuan ,
  • LIU Shengchuan
Expand
  • 1. Chengdu Aircraft Design & Research Institute, Chengdu 610091, China;
    2. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China;
    3. School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

Received date: 2016-04-22

  Revised date: 2016-05-27

  Online published: 2016-07-12

摘要

临近空间无人飞行器导航系统的故障直接影响到飞行器的任务执行和飞行安全,因此必须能够长时间地保持稳定性和精确性,为达到此目的必须设计由惯性导航、卫星导航等多种导航传感器组成的多源多余度容错导航系统,提高系统的可靠性。针对临近空间飞行器制导控制对导航信息的需求,提出了一种标准的三余度导航系统架构,并设计了采用新型加权平均表决子算法,具备故障检测和隔离以及故障重构功能的容错重构算法,构建了适用于临近空间无人飞行器的多余度容错导航系统,通过实测试验数据仿真验证了容错导航系统的性能,展示了系统一次故障工作的故障容错能力。所研究内容也可被其他类型的无人飞行器借鉴和参考。

本文引用格式

吴永亮 , 蔡亚男 , 宝音贺西 , 熊立川 , 刘盛川 . 临近空间无人飞行器多余度容错导航系统设计[J]. 航空学报, 2016 , 37(S1) : 91 -98 . DOI: 10.7527/S1000-6893.2016.0171

Abstract

The near space UAV's navigation system fault can directly influence the aircraft's mission execution and flight safety, so the navigation system must be reliable enough for continuous and accurate work. In order to satisfy this requirement, the navigation system must be configured with all available navigation devices, such as inertial navigation system and global navigation system, to improve the reliability. Based on the near space UAV's guidance and control requirements for the navigation information, this paper proposes a standard three-redundant navigation system architecture, and designs the fault reconfiguration algorithm to realize the fault detection, isolation and reconfiguration by using a new weighted average signal voting algorithm. The simulation result using real sensor's measurement data validates the fault tolerant ability of the navigation system and the algorithm proposed in this paper. The research in this paper can be used for reference for the navigation system design for other types of UAVs.

参考文献

[1] 顾云涛. 无人机导航技术研究[J]. 现代导航, 2013(3):198-201. GU Y T. Research on navigation technology for unmanned aircraft[J]. Modern Navigation, 2013(3):198-201 (in Chinese).
[2] 顾启泰, 刘学斌. 近代制导、导航与控制系统的进展[J].导航, 1998(1):1-8. GU Q T, LIU X B. The progress of modern guidance, navigation and control system[J]. Navigation, 1998(1):1-8 (in Chinese).
[3] 王大勇, 李悦霖. 高空长航时无人侦察机关键技术[J].飞航导弹, 2009(11):31-35. WANG D Y, LI Y L. High altitude long-endurance UAV's key technology[J]. Winged Missiles Journal, 2009(11):31-35 (in Chinese).
[4] 包强, 姜为学, 刘小松. 全球鹰无人机导航系统分析[J].飞航导弹, 2009(11):60-63. BAO Q, JIANG W X, LIU X S. Analysis of global Hawk's navigation system[J]. Winged Missiles Journal, 2009(11):60-63 (in Chinese).
[5] LOEGERING G, EVANS D. The evolution of the global Hawk & MALD avionics systems[C]//Proceedings of the 18th Digital Avionics Systems Conference. Piscataway, NJ:IEEE Press, 1999:6.A.1-1-6.A.1-8.
[6] LOEGERING G. The global Hawk navigation system, an odyssey in the development of an unmanned aerial vehicle[C]//The ION-GPS 99 Conference. 1999:1-6.
[7] 杨伟. 容错飞行控制系统[M]. 西安:西北工业出版社, 2007:20-50. YANG W. Fault tolerant flight control system[M]. Xi'an:Northwest Industry Press, 2007:20-50 (in Chinese).
[8] 王新龙, 马闪. 高空长航时无人机高精度自主定位方法[J]. 航空学报, 2008, 29(S1):39-44. WANG X L, MA S. High precision autonomous positioning method for unmanned aerial vehicle in high altitude proximity space[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(S1):39-44 (in Chinese).
[9] 吴海仙, 俞文伯, 房建成. 高空长航时无人机SINS/CNS组合导航系统仿真研究[J]. 航空学报, 2006, 27(2):329-304. WU H X, YU W B, FANG J C. Simulation of SINS/CNS integrated navigation system used on high altitude and long-flight-time unpiloted aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(2):329-304 (in Chinese).
[10] 王社伟, 张洪钺. 冗余配置捷联惯导系统故障检测门限的确定[J]. 航空学报, 2000, 21(4):303-307. WANG S W, ZHANG H Y. Falut detection threshold determination in a redundant strapdown inertial navigation system[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(4):303-307 (in Chinese).
[11] 宁大军, 潘鸿飞. 捷联惯导系统级余度技术研究[J]. 战术导弹技术, 2007(1):71-82. NING D J, PAN H F. Study of strapdown inertial navigation systematic redundancy[J]. Tactical Missile Technology, 2007(1):71-82 (in Chinese).
[12] 金宏, 张洪钺. 一种用于导航系统故障检测的简易方法[J]. 导航与航天运载技术, 1998(1):22-27. JIN H, ZHANG H Y. A simple approach to detect fault in navigation systems[J]. Missiles and Space Vehicles, 1998(1):22-27 (in Chinese).
[13] 金宏, 张洪钺. 组合导航系统的鲁棒故障诊断[J]. 北京航空航天学报, 2000, 26(1):26-29. JIN H, ZHANG H Y. Robust fault diagnosis of integrated navigation system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(1):26-29 (in Chinese).

文章导航

/