流体力学与飞行力学

超声速非平衡电离磁流体流动控制试验和数值模拟

  • 李益文 ,
  • 樊昊 ,
  • 张百灵 ,
  • 王宇天 ,
  • 段成铎 ,
  • 高岭 ,
  • 庄重 ,
  • 何国强
展开
  • 1. 西北工业大学 航天学院 燃烧、流动和热结构重点实验室, 西安 710072;
    2. 空军工程大学 等离子体动力学实验室, 西安 710038

收稿日期: 2016-04-26

  修回日期: 2016-06-12

  网络出版日期: 2016-07-01

基金资助

国家自然科学基金(51306207、11372352);中国博士后科学基金(2016M590972);陕西省自然科学基础研究计划(2015JM5184)

Test and numerical simulation on magneto-hydrodynamic flow control with nonequilibrium ionization

  • LI Yiwen ,
  • FAN Hao ,
  • ZHANG Bailing ,
  • WANG Yutian ,
  • DUAN Chengduo ,
  • GAO Ling ,
  • ZHUANG Zhong ,
  • HE Guoqiang
Expand
  • 1. Science and Technology on Combustion, Internal Flow and Thermo-Structure Laboratory, Astronautics School, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China

Received date: 2016-04-26

  Revised date: 2016-06-12

  Online published: 2016-07-01

Supported by

National Natural Science Foundation of China (51306207,11372352); China Postdoctoral Science Foundation (2016M590972); Natural Science Foundation Research Project of Shaanxi Province (2015JM5184)

摘要

为了开展磁流体(MHD)流动控制原理研究,建立了磁流体技术试验系统,采用电容耦合射频-直流组合放电对Ma=3.5气流进行电离,在磁场作用下产生顺/逆气流方向的洛伦兹力控制流场,采用试验段静压变化来监测磁流体流动控制效果,通过一维模型计算磁流体流动控制过程中流场变化情况,分析磁流体流动控制效果;通过添加电磁源项的Navier-Stokes方程耦合电势泊松方程建立了二维磁流体动力模型,对磁流体流动控制进行数值模拟研究。主要结论如下:在磁场约束下,电容耦合射频-直流组合放电能够在Ma=3.5流场中产生大体积均匀电流,电导率约0.015 S/m;在焦耳热和洛伦兹力作用下,磁流体加速时静压升高了130 Pa,减速时静压升高了200 Pa;磁流体流动控制过程中,仅有不足10%的能量在磁流体通道内发生了作用;数值模拟结果显示,在试验条件下,加速时静压升高了128 Pa,减速时静压升高了208 Pa,与试验结果基本吻合。

本文引用格式

李益文 , 樊昊 , 张百灵 , 王宇天 , 段成铎 , 高岭 , 庄重 , 何国强 . 超声速非平衡电离磁流体流动控制试验和数值模拟[J]. 航空学报, 2017 , 38(3) : 120368 -120368 . DOI: 10.7527/S1000-6893.2016.0188

Abstract

In order to study the mechanism of MHD flow control, an experimental system based on MHD technology is established. Ma=3.5 flow is ionized with radio frequency-direct current composite discharge to acquire the bulk mass and uniform current. The research on accelerating/decelerating in different directional magnetic field is implemented, and the effect of MHD control is analyzed by static pressure of experimental section and quasi-one-dimensional model. The numerical simulation of MHD flow control with the MHD model is carried out based on the Navier-Stokes equation coupled with the electronmagnetism source term. The result shows that the bulk mass and the uniform current in Ma=3.5 flow can be acquired with radio frequency-direct current composite discharge, and the conductivity is 0.015 S/m. As a result of joule heat, the static pressure rises 130 Pa with accelerating Lorentz force, and 200 Pa with decelerating Lorentz force. There is less than 10% energy is spent on the MHD flow control. The result of numerical simulation shows that under the experimental condition, the static pressure rises 128 Pa with accelerating Lorentz force, and 208 Pa with decelerating Lorentz force. The simulation results agree basically with the experiment results.

参考文献

[1] SU C B, LI Y H, CHEN B Q, et al. Experimental investigation of MHD flow control for the oblique shock wave around the ramp in low-temperature supersonic flow[J]. Chinese Journal of Aeronautics, 2010, 22(1):22-32.
[2] 王振国, 梁剑寒, 丁猛, 等. 高超声速飞行器动力系统研究进展[J]. 力学进展, 2009, 39(6):716-739. WANG Z G, LIANG J H, DING M,et al. A review on hypersonic airbreathing propul sion system[J]. Advanced in Mechanics, 2009, 39(6):716-739(in Chinese).
[3] 郑小梅, 吕浩宇, 徐大军, 等. MHD加速器模式磁控进气道的优化设计[J]. 航空学报, 2010, 31(2):223-230. ZHENG X M, LU H Y, XU D J, et al. Optimization of accelerator mode MHD controlled inlet[J]. Acta Aeronoutica et Astronautica Sinica, 2010, 31(2):223-230(in Chinese).
[4] KURANOV A L, KUCHINSKY V V, SHEIKIN E G. Scramjet with MHD control under "Ajax" concept. requirements for MHD Systems:AIAA-2001-2881[R]. Reston:AIAA, 2001.
[5] KURANOV A L, SHEIKIN E G. MHD control on hypersonic aircraft under "AJAX" concept. possibilities of MHD Generator:AIAA-2002-0490[R]. Reston:AIAA, 2002.
[6] DAVID M W, NEDUNGADI A. Plasma aerodynamic flow control for hypersonic inlets:AIAA-2004-4129[R]. Reston:AIAA, 2004.
[7] BRICHKIN D I, KURANOV A L, SHEIKIN E G. The potentialities of MHD control for improving scramjet proformance:AIAA-1999-4969[R]. Reston:AIAA, 1999.
[8] SHNEIDER M N, MACHERET S O, MILES R B. Nonequilibrium magnetohydrodynamic control of scramjet inlet:AIAA-2002-2251[R]. Reston:AIAA, 2002.
[9] BOBASHEV S V, GOLOVACHOV Y P, VANWIE D M. Deceleration of supersonic plasma flow by an applied magnetic field:AIAA-2002-2247[R]. Reston:AIAA, 2002.
[10] BOBASHEV S V, MENDE N P, SAKHAROV V A, et al. MHD control of the separation phenomenon in a supersonic Xenon plasma flow:AIAA-2003-168[R]. Reston:AIAA, 2003.
[11] BOBASHEV S V, GOLOVACHOV Y P, VAN WIE D M. Deceleration of supersonic plasma flow by an applied magnetic field[J]. Journal of Propulsion and Power 2003, 19(4):538-546.
[12] 李益文, 李应红, 张百灵, 等. 基于激波风洞的超声速磁流体动力技术试验系统[J]. 航空学报, 2011, 32(6):1015-1024. LI Y W, LI Y H, ZHANG B L, et al. Supersonic magnetohydyodynamic technical experimental system dased on shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):1015-1024(in Chinese).
[13] NISHIHARA M. Low-temperature supersonic flow control using repetitively pulsed MHD force[D]. Columbus:The Ohio State University, 2006.
[14] NISHIHARA M, BRUZZESE J, ADAMOVICH I V. Experimental and computational studies of low-temperature M=4 flow deceleration by Lorentz gorce:AIAA-2007-4595[R]. Reston:AIAA, 2007.
[15] NISHIHARA M J, RICH W, LEMPERT W R, et al. MHD flow control and power generation in low-temperature supersonic flows:AIAA-2006-3076[R]. Reston:AIAA, 2006.
[16] MEYER R, CHINTALA N, BYSTRICKY B, et al. Lorentz force effect on a supersonic ionized boundary layer:AIAA-2004-0510[R]. Reston:AIAA, 2004.
[17] UDAGAWA K, KAMINAGA S, ASANO H, et al. MHD boundary layer flow acceleration experiments:AIAA-2006-3233[R]. Reston:AIAA, 2006.
[18] UDAGAWA K, KAWAGUCH K, SAITO S, et al. Experimental study on supersonic flow control by MHD interaction:AIAA-2008-4222[R]. Reston:AIAA, 2008.
[19] MACHERET S O, SHNEIDER M N, MILES R B. External supersonic flow and scramjet inlet control by MHD with electron beam ionization:AIAA-2001-0492[R]. Reston:AIAA, 2001.
[20] LEONOV S B, YARANTSEV D A. Near-surface electrical discharge in supersonic airflow:properties and flow control[J]. Journal of Propulsion and Power 2008, 24(6):1168-1181.

文章导航

/