电子与控制

面向GMTI任务的系绳式InSAR系统展开研究

  • 张锦绣 ,
  • 张志刚
展开
  • 哈尔滨工业大学 航天学院, 哈尔滨 150001
张锦绣 男,博士,教授,博士生导师。主要研究方向:分布式航天器系统设计与仿真,系绳式卫星系统应用研究,空间垃圾天基主动移除。Tel.:0451-86403440-8308 E-mail:jinxiu@hit.edu.cn;张志刚 男,博士研究生。主要研究方向:航天器动力学与控制,系绳式InSAR系统。Tel.:0451-86402357-8503 E-mail:zhzhghit@126.com

收稿日期: 2016-01-11

  修回日期: 2016-04-11

  网络出版日期: 2016-06-27

基金资助

国家自然科学基金(91438202)

Deployment research of tethered InSAR system for GMTI missions

  • ZHANG Jinxiu ,
  • ZHANG Zhigang
Expand
  • School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

Received date: 2016-01-11

  Revised date: 2016-04-11

  Online published: 2016-06-27

Supported by

National Natural Science Foundation of China (91438202)

摘要

研究了短绳系式合成孔径雷达干涉技术(InSAR)系统面向地面动目标检测(GMTI)任务时的展开问题。使用系统的三维动力学模型,首先分析系统在平衡位置附近的稳定性,确定系统执行GMTI任务时面临的问题。结合GMTI任务需求确定系统短系绳情况时的展开方式,使用粒子群算法对系统初始分离速度和方向进行优选,使系统在展开结束时恰好摆动到水平方向。在展开完成后对系统施加阻尼控制和喷气控制,使系统长期处于水平方向附近,以获取期望顺轨基线,最后通过数值仿真验证。结果表明:考虑展开机构静摩擦力时,在优选的初始状态下无控展开,系统能够到达目标位置,且在稳定控制下能够长期保持顺轨基线大于99.6 m。

本文引用格式

张锦绣 , 张志刚 . 面向GMTI任务的系绳式InSAR系统展开研究[J]. 航空学报, 2016 , 37(10) : 3083 -3091 . DOI: 10.7527/S1000-6893.2016.0186

Abstract

The deployment of tethered interferometric synthetic aperture radar (InSAR) system applied for ground moving target indication (GMTI) missions is researched in the paper. To ascertain the characteristic of deployment, the three-dimensional dynamics model is applied, and the steady state analysis is presented. According to the system feature, the free deployment method is chosen to avoid halt caused by the output error of control mechanism. As a result, the deployment is sensitive to the initial state of system. Hence, particle swarm algorithm is used to optimize the initial state to deploy the system along horizontal direction when the deployment fulfills. Then a passive damper and jets control are used to make the system stay near horizontal direction in long-term. Finally, the numerical simulation is executed to verify the optimized initial state and the steady control method. The results show that the system could deploy to the target position with the optimized initial state, and the along-track baseline of system is always bigger than 99.6 m with the stable control.

参考文献

[1] OUCHI K. Recent trend and advance of synthetic aperture radar with selected topics[J]. Remote Sensing, 2013, 5(2):716-727.
[2] MOREIRA A, IRAOLA P P, YOUNIS M, et al. A tutorial on synthetic aperture[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1):6-43.
[3] KAHLE R, RUNGE H, ARDAENS J S, et al. Formation flying for along-track interferometric oceanography-First in-flight demonstration with TanDEM-X[J]. Acta Astronautica, 2014, 99:130-142.
[4] MOCCIA A, RUFINO G. Spaceborne along-track SAR interferometry:Performance analysis and mission scenarios[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(1):199-213.
[5] 梁甸农, 蔡斌, 王敏, 等. 星载SAR-GMTI研究进展[J]. 国防科技大学学报, 2009, 31(4):87-92. LIANG D N, CAI B, WANG M, et al. Research process of spaceborne SAR-GMTI systems[J]. Journal of National Univeristy of Defense Technology, 2009, 31(4):87-92(in Chinese).
[6] MASSONNET D. Capabilities and limitations of the interferometric Cartwheel[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3):506-520.
[7] MOCCIA A, VETRELLA S. A tethered interferometric synthetic aperture radar (SAR) for a topographic mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(1):103-109.
[8] BOMBARDELLI C, LORENZINI E C, QUADRELLI M B. Retargeting dynamics of a linear tethered interferometer[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6):1061-1067.
[9] 钟睿, 徐世杰. 基于直接配点法的绳系卫星系统变轨控制[J]. 航空学报, 2010, 31(3):572-578. ZHONG R, XU S J. Orbit-transfer control for TSS using direct collocation method[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3):572-578(in Chinese).
[10] 刘刚, 李传江, 马广富. 应用非线性模型预测控制的绳系卫星Halo轨道保持控制[J]. 航空学报, 2014, 35(9):2605-2614. LIU G, LI C J, MA G F. Station-keeping of tethered satellite system around a halo orbit using nonlinear model predictive control[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2605-2614(in Chinese).
[11] WILLIAMS P, HYSLOP A, STELZER M, et al. YES2 optimal trajectories in presence of eccentricity and aerodynamic drag[J]. Acta Astronautica, 2009, 64(7):745-769.
[12] ZHONG R, ZHU Z H. Optimal control of nanosatellite fast deorbit using electrodynamic tether[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(4):1182-1194.
[13] YU S H. Range-rate control algorithms and space rendezvous schemes[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(1):206-208.
[14] GLABEL H, ZIMMERMANN F, BRUCKNER S, et al. Adaptive neural control of the deployment procedure for tether-assisted re-entry[J]. Aerospace Science and Technology, 2004, 8(1):73-81.
[15] WILLIAMS P. Optimal deployment/retrieval of tethered satellites[J]. Journal of Spacecraft and Rockets, 2008, 45(2):324-343.
[16] SUN G H, ZHU Z H. Fractional order tension control for stable and fast tethered satellite retrieval[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6):2062-2066.
[17] ASLANOV V S, LEDKOV A S. Dynamics of tethered satellite systems[M]. Oxford:Woodhead Publishing, 2012:65-88.
[18] 徐鹤鸣. 多目标粒子群优化算法的研究[D]. 上海:上海交通大学, 2013:4-12. XU H M. Research on multi-objective particle swarm optimization algorithms[D]. Shanghai:Shanghai Jiao Tong University, 2013:4-12(in Chinese).
[19] 沈伋, 韩丽川, 沈益斌. 基于粒子群算法的飞机总体参数优化[J]. 航空学报, 2008, 29(6):1538-1541. SHEN J, HAN L C, SHEN Y B. Optimization of airplane primary parameters based on particle swarm algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1538-1541(in Chinese).
[20] LEE N N, ZORN A H, WEST M. Passive vertical stabilization of two tethered nanosatellites with engineered damping[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston:AIAA, 2008:1-16.
[21] LORENZINI E C. A three-mass tethered system for micro-g/variable-g applications[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(3):242-249.

文章导航

/