热环境下结构固有振动特性试验及分析
收稿日期: 2016-04-25
修回日期: 2016-05-13
网络出版日期: 2016-06-24
Test and analysis of natural modal characteristics of a wing model with thermal effect
Received date: 2016-04-25
Revised date: 2016-05-13
Online published: 2016-06-24
高超声速飞行器在气动热环境中,其固有频率和振型会受温度升高的影响而发生变化,从而其颤振特性也要发生改变。本文建立了适用于工程应用的飞行器翼面结构热模态试验方法及试验装置,为验证该方法的有效性,针对高超声速飞行器翼面结构特征,设计和制造了钛合金翼面盒段试验件,测试了高温环境翼面热模态。开展了单面加热、双面加热、温度呈梯度分布加热和随时间变化加热等几种加热方式对比试验,试验结果表明,温度升高对结构模态特性影响明显;且该试验方法具有很高的工程实用价值,可应用于飞行器翼面结构热模态试验;同时,建立了试验件有限元模型,开展了热模态分析,对试验结果和分析结果进行了对比分析和讨论,结果具有较高的一致性。
关键词: 高超声速; 热颤振; 热模态试验; 热模态分析; 地面共振试验(GVT)
谭光辉 , 李秋彦 , 邓俊 . 热环境下结构固有振动特性试验及分析[J]. 航空学报, 2016 , 37(S1) : 32 -37 . DOI: 10.7527/S1000-6893.2016.0148
Temperature elevator can affect the natural frequencies and normal modes of hypersonic vehicles in aerodynamic heating, and thus the flutter characteristics of the vehicles can change with the dynamic properties. Focusing on the special characteristics or hypersonic vehicles, this paper analyzes the research of a thermo-modal test method for a wing structure. A thermo-modal test method is presented, and a thermo-modal test system using this method is established. For the purpose of certification, a titanium wing model is designed and manufactured, and its thermo-modes with variation of boundary condition are acquired. The nomal modes under several thermal circumstances are investigated during the test, including heating evenly at single side and both sides, heating unevenly at both sides, and heating to time variation. The results show that elevated temperature has a significant effect on the natural frequencies of the wing model, and the test method has high engineering practical value. To simulate these phenomena, theoretical analysis of thermo-modes of the wing is performed by a finite element model using the software NASTRAN. The results agree well with the test results, showing that this analysis method can meet the requirement in engineering.
[1] 杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述[J]. 航空学报, 2010, 31(1):1-11. YANG C, XU Y, XIE C C. Review of studies on aeroelasticity of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1):1-11 (in Chinese).
[2] 吴振强, 程昊, 张伟, 等. 热环境对飞行器壁板结构动特性的影响[J]. 航空学报, 2013, 34(2):334-342. WU Z Q, CHENG H, ZHANG W, et al. Effects of thermal environment on dynamic properties of aerospace vehicle panel structures[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):334-342 (in Chinese).
[3] 史晓鸣, 杨炳渊. 瞬态加热环境下变厚度板温度场及热模态分析[J].计算机辅助工程, 2006, 15(Suppl):15-18 SHI X M, YANG B Y.Temperature field and mode analysis of flat plate with thermal environment of transient heating[J].Computer Aided Engineering, 2006, 15(Suppl):15-18 (in Chinese).
[4] 陈浩, 徐敏, 蔡天星. 高超声速机翼瞬态气动加热下热颤振分析[J].西北工业大学学报, 2012, 30(6):898-904 CHEN H, XU M, CAI T X. Thermal flutter analysis of hypersonic wing on transient aerodynamic heating[J]. Journal of Northwestern Polytechnical University, 2012, 30(6):898-904 (in Chinese).
[5] VOSTEEN F, MCWITHEY R, THOMSON R G. Effect of transient heating on vibration frequencies of some simple wing structures:Technical Note 4054[R]. Washington, D.C.:NACA, 1957.
[6] SPIVEY N D. High-temperature modal survey of a hot-structure control surface:TM-2011-215965[R].Washington, D.C.:NASA, 2011.
[7] 程昊, 李海波, 靳荣华. 高超声速飞行器结构热模态试验国外进展[J]. 强度与环境, 2012, 29(3):52-59 CHENG H, LI H B, JIN R H. The review of the high temperature modal test for the hypersonic vehicle[J]. Structure & Environment Engineering, 2012, 39(3):52-59 (in Chinese).
[8] 麻连净, 蔡骏文. 导弹舵面热模态试验激振方法研究[J]. 战术导弹技术, 2013(6):20-25 MA L J, CAI J W. Study of rudder thermo-modal test excitation method[J]. Tactical Missile Technology, 2013(6):20-25 (in Chinese).
[9] 苏华昌, 骞永博, 李增文. 舵面热模态试验技术研究[J]. 强度与环境, 2011, 38(5):18-24 SU H C, QIAN Y B, LI Z W. The study of rudder thermo-modal test technique[J]. Structure & Environment Engineering, 2011, 38(5):18-24 (in Chinese).
[10] 吴大方, 赵寿根, 潘兵, 等. 高速巡航导弹翼面结构热-振联合试验研究[J]. 航空学报, 2012, 33(9):1633-1642 WU D F, ZHAO S G, PAN B, et al. Research on thermal-vibration joint test for wing structure of high-speed cruise missile[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1633-1642 (in Chinese).
/
〈 | 〉 |