一种改进的果蝇优化算法及其在气动优化设计中的应用
收稿日期: 2016-04-27
修回日期: 2016-06-16
网络出版日期: 2016-06-23
基金资助
国家自然科学基金(11172240);航空科学基金(2014ZA53002);国家“973”计划(2015CB755800)
An improved fruit fly optimization algorithm and its application in aerodynamic optimization design
Received date: 2016-04-27
Revised date: 2016-06-16
Online published: 2016-06-23
Supported by
National Natural Science Foundation of China (11172240); Aeronautical Science Foundation of China (2014ZA53002); National Basic Research Program of China (2015CB755800)
果蝇优化算法(FOA)是一种新的群体智能优化算法,具有良好的全局收敛特性。为进一步提高FOA的寻优性能,将其引入到气动优化设计中,发展形成了改进的果蝇优化算法(IFOA)。IFOA通过引入惯性权重函数动态调整搜索步长,有效实现了算法全局搜索和局部搜索之间的动态平衡,提高了算法整体搜索效率和寻优精度;对于多维优化问题,IFOA每次搜索仅随机扰动其中一个决策变量,并在每个迭代步内将所有优秀果蝇个体(可行解)结合产生一个全新的果蝇个体进行一次搜索,大大加快了算法的收敛速度。函数测试结果表明,IFOA显著提高了FOA的寻优性能。将IFOA应用到气动优化设计中,翼型反设计和单/多目标优化设计的算例表明,IFOA是一种简单高效的优化方法,可广泛应用于气动优化设计。
田旭 , 李杰 . 一种改进的果蝇优化算法及其在气动优化设计中的应用[J]. 航空学报, 2017 , 38(4) : 120370 -120370 . DOI: 10.7527/S1000-6893.2016.0198
As a new swarm intelligence optimization algorithm, fruit fly optimization algorithm (FOA) has a good property of global convergence. In order to further improve the searching performance of FOA and use it for aerodynamic optimization design, a new algorithm named improved fruit fly optimization algorithm (IFOA) is presented. The search step is modified by introducing an inertia weight function to IFOA, and the dynamical balance between the global and the local search is satisfied. The searching efficiency and accuracy of algorithm is integrally improved. For multi-dimensional problems, only one decision variant is randomly changed for producing a new solution in each search, and then a new individual fruit fly is produced to give a search by combining all excellent individuals in the iteration. The convergence speed can thus be greatly accelerated. Function test results show that IFOA has obviously improved the searching performance of FOA. IFOA is applied to aerodynamic optimization design, and the examples of airfoil inverse design and single/multi-objective optimization design demonstrate that IFOA is a simple and efficient optimization method, and can be widely used in aerodynamic optimization design.
[1] RAY T, TSAI H M. Swarm algorithm for single-and multi-objective airfoil design optimization[J]. AIAA Journal, 2004, 42(2):366-373.
[2] 李丁, 夏露. 改进的粒子群优化算法在气动设计中的应用[J]. 航空学报, 2012, 33(10):1809-1816. LI D, XIA L. Application of improved particle swarm optimization algorithm to aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1809-1816 (in Chinese).
[3] 余刚. 基于混合遗传算法和复合形法的翼型优化设计[D]. 西安:西北工业大学, 2007. YU G. Optimization design of airfoil based on hybrid genetic algorithm and compound form method[D]. Xi'an:Northwestern Polytechnical University, 2007 (in Chinese).
[4] DUAN Y H, CAI J S, LI Y Z. Gappy proper orthogonal decomposition-based two-step optimization for airfoil design[J]. AIAA Journal, 2012, 50(4):968-971.
[5] 潘文超. 果蝇最佳化演算法[M]. 台北:沧海书局, 2011. PAN W C. Fruit fly optimization algorithm[M]. Taipei:Tsang Hai Publishing, 2011 (in Chinese).
[6] PAN W C. A new evolutionary computation approach:Fruit fly optimization algorithm[C]//2011 Conference of Digital Technology and Innovation Management, 2011.
[7] PAN W C. A new fruit fly optimization algorithm:Taking the financial distress model as an example[J]. Knowledge-Based Systems, 2012, 26:69-74.
[8] 吴小文, 李擎. 果蝇算法和5种群智能算法的寻优性能研究[J]. 火力与指挥控制, 2013, 38(4):17-25. WU X W, LI Q. Research of optimizing performance of fruit fly optimization algorithm and five kinds of intelligent algorithm[J]. Fire Control & Command Control, 2013, 38(4):17-25 (in Chinese).
[9] 张勇, 夏树发, 唐冬生. 果蝇优化算法对多峰函数求解性能的仿真研究[J]. 暨南大学学报(自然科学与医学版), 2014, 35(1):82-87. ZHANG Y, XIA S F, TANG D S. Simulation of multi-peak function based on the fly optimization algorithm[J]. Journal of Jinan University (Natural Science & Medicine Edition), 2014, 35(1):82-87 (in Chinese).
[10] 单单. 止损策略对双随机安全第一投资组合模型的影响研究[D]. 重庆:重庆大学, 2014. SHAN D. A study of the effect of exit strategy on birandom safety-first portfolio model[D]. Chongqing:Chong-qing University, 2014 (in Chinese).
[11] 潘文超. 应用果蝇优化算法优化广义回归神经网络进行企业经营绩效评估[J]. 太原理工大学学报(社会科学版), 2011, 29(4):1-5. PAN W C. Using fruit fly optimization algorithm optimized general regression neural network to construct the operating performance of enterprises model[J]. Journal of Taiyuan University of Technology(Social Sciences Edition), 2011, 29(4):1-5 (in Chinese).
[12] 霍慧慧. 果蝇优化算法及其应用研究[D]. 太原:太原理工大学, 2015. HUO H H. Research on fruit fly optimization algorithm and its applications[D]. Taiyuan:Taiyuan University of Technology, 2015 (in Chinese).
[13] 周平, 白广忱. 基于神经网络与果蝇优化算法的涡轮叶片低循环疲劳寿命健壮性设计[J]. 航空动力学报, 2013, 28(5):1013-1018. ZHOU P, BAI G C. Robust design of turbine-blade low cycle fatigue life based on neural networks and fruit fly optimization algorithm[J]. Journal of Aerospace Power, 2013, 28(5):1013-1018 (in Chinese).
[14] 杜晓东. 果蝇优化算法在配电网规划中的应用[D]. 北京:华北电力大学, 2014. DU X D. The application of fruit fly optimization algorithm in distribution network planning[D]. Beijing:North China Electric Power University, 2014 (in Chinese).
[15] 毛正阳, 方群, 李克行,等. 应用改进果蝇优化算法的月面巡视器路径规划[J]. 中国空间科学技术, 2014, 5:87-93. MAO Z Y, FANG Q, LI K X, et al. Path planning for lunar rover based on modified fruit fly optimization algorithm[J]. Chinese Space Science and Technology, 2014, 5:87-93 (in Chinese).
[16] SHAN D, CAO G H, DONG H J. LGMS_FOA:An improved fruit fly optimization algorithm for solving optimization problems[J]. Mathematical Problems in Engineering, 2013(7):1256-1271.
[17] 韩俊英, 刘成忠. 反向认知的高效果蝇优化算法[J]. 计算机工程, 2013, 39(11):223-225. HAN J Y, LIU C Z. Efficient fruit fly optimization algorithm with reverse cognition[J]. Computer Engineering, 2013, 39(11):223-225 (in Chinese).
[18] YUAN X F, DAI X S, ZHAO J Y, et al. On a novel multi-swarm fruit fly optimization algorithm and its application[J]. Applied Mathematics and Computation, 2014, 233:260-271.
[19] 韩俊英, 刘成忠. 自适应混沌果蝇优化算法[J]. 计算机应用, 2013, 33(5):1313-1316. HAN J Y, LIU C Z. Adaptive chaos fruit fly optimization algorithm[J]. Journal of Computer Application, 2013, 33(5):1313-1316 (in Chinese).
[20] 郑晓龙, 王玲, 王圣尧. 求解置换流水线调度问题的混和离散果蝇算法[J]. 控制理论与应用, 2014, 31(2):159-164. ZHENG X L, WANG L, WANG S Y. A hybrid discrete fruit fly optimization algorithm for solving permutation flow-shop scheduling problem[J]. Control Theory & Applications, 2014, 31(2):159-164 (in Chinese).
[21] 雷开友, 邱玉辉, 贺一. 一种优化高维复杂函数的PSO算法[J]. 计算机科学, 2006, 33(8):202-205. LEI K Y, QIU Y H, HE Y. An effective particle swarm optimizer for solving complex functions with high dimensions[J]. Computer Science, 2006, 33(8):202-205 (in Chinese).
[22] PAN Q K, SANG H Y, DUAN J H, et al. An improved fruit fly optimization algorithm for continuous function optimization problems[J]. Knowledge-Based Systems, 2014, 62(5):69-83.
[23] 王建军, 高正红. Hicks-Henne翼型参数化方法分析及改进[J]. 航空计算技术, 2010, 40(4):46-49. WANG J J, GAO Z H. Analysis and improvement of Hicks-Henne airfoil parameterization method[J]. Aeronautical Computing Technique, 2010, 40(4):46-49 (in Chinese).
[24] HICKS R M, HENNE P A. Wing design by numerical optimization[J]. Journal of Aircraft, 1978, 15(7):407-413.
[25] COOK P H, MCDONALD M A, FIRMIN M C P. Aerofoil RAE 2822-Pressure distributions, and boundary layer and wake measurements:AGARD Report AR 138[R]. Paris:AGARD, 1979.
/
〈 | 〉 |