流体力学与飞行力学

基于自适应混合网格的脱体涡模拟

  • 张扬 ,
  • 张来平 ,
  • 赫新 ,
  • 邓小刚
展开
  • 1. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000;
    2. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    3. 中国空气动力研究与发展中心 低速空气动力研究所, 绵阳 621000;
    4. 国防科技大学, 长沙 410073
张扬,男,博士研究生,工程师。主要研究方向:低速空气动力学计算与试验。Tel.:0816-2463205,E-mail:zhangy29v@sina.com;张来平,男,博士,研究员,博士生导师。主要研究方向:计算流体力学、非定常流动机理。Tel.:0816-2463292,E-mail:zhanglp_cardc@126.com

收稿日期: 2016-01-18

  修回日期: 2016-06-02

  网络出版日期: 2016-06-14

基金资助

国家自然科学基金(11532016);国家科技支撑计划(2016YFB0200700)

Detached eddy simulation based on adaptive hybrid grids

  • ZHANG Yang ,
  • ZHANG Laiping ,
  • HE Xin ,
  • DENG Xiaogang
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    3. Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    4. National University of Defense Technology, Changsha 410073, China

Received date: 2016-01-18

  Revised date: 2016-06-02

  Online published: 2016-06-14

Supported by

National Natural Science Foundation of China (11532016); National Key Technology Research and Development Program (2016YFB0200700)

摘要

基于混合网格和CGNS(CFD General Notation System)数据结构,建立了一种各向同性加密/稀疏的网格自适应方法。在悬空点的后处理中,让含有悬空点的单元转化为任意多面体,从而简化了自适应单元剖分模版,同时自适应网格单元之间可完全相容,自适应生成的网格能够直接用于可处理任意多面体的流场求解器。将该自适应方法与脱体涡模拟(DES)算法相结合,开展了65°后掠三角翼大迎角流动的数值模拟应用,并与初始网格的模拟结果进行了详细比较。对比表明:采用网格自适应方法适当增加局部网格量,能够以较小的成本迅速提高三角翼背风区的空间分辨率,增强数值模拟对小尺度涡系结构的解析能力,从而弥补了基于混合网格的脱体涡模拟中常用二阶格式计算的空间分辨率相对偏低、不利于湍流多尺度结构精细模拟的不足。

本文引用格式

张扬 , 张来平 , 赫新 , 邓小刚 . 基于自适应混合网格的脱体涡模拟[J]. 航空学报, 2016 , 37(12) : 3605 -3614 . DOI: 10.7527/S1000-6893.2016.0175

Abstract

An adaptive mesh technique with isotropic refining/coarsening approach based on CFD general notation system (CGNS) data structure is presented and implemented for hybrid grids. In order to simplify the possible refinement cases, elements with hanging nodes are changed into polyhedron and meanwhile the compatibility of the grid is maintained, so flow solvers that allow polyhedrons can operate on the adapted meshes without any modifications. Then, detached eddy simulation (DES) method combined with the grid adaptation technique is applied to simulate the flow over a 65° sweep delta wing at high angle of attack. The comparison of the DES results on initial grid and adaptive grid, as well as the experimental data, is carried out. The numerical results demonstrate that with the use of the adaptive technique the spatial resolution in the leeward side of the delta wing can be improved effectively due to the increment of cell number in some local region and the capability of present DES solver to resolve the small scale turbulent flow structure is effectively enhanced, consequently the issue of resolution is alleviated in DES simulation based on hybrid grid with a commonly used second-order scheme.

参考文献

[1] SLOTNICK J, ABDOLLAH K, JUAN A, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA-CR-218178[R]. Washington, D.C.:NASA, 2014.
[2] SPALART P R, JOU W H, STRELETS M, et al. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach[C]//Proceedings of 1st AFOSR International Conference On DNS/LES. Columbus:Greyden Press, 1997:137-147.
[3] BAKER T J. Mesh generation:Art or science?[J]. Progress in Aerospace Sciences, 2005, 41(1):29-63.
[4] HAASE W, BRAZA M, REVELL A. DESider-A European effort on hybrid RANS-LES modeling[M]. Berlin:Springer, 2009:19-139.
[5] BAKER T J. Mesh adaptation strategies for problems in fluid dynamics[J]. Finite Elements in Analysis and Design, 1997, 25(3-4):243-273.
[6] MAVRIPLIS D J. Unstructured mesh generation and adaptivity:NASA-CR-195069[R]. Washington, D.C.:NASA, 1995.
[7] LOHNER R. Adaptive h-refinement on 3D unstructured grids for transient problems[J]. International Journal for Numerical Methods in Fluids, 1992, 14(12):1407-1419.
[8] MAVRIPLIS D J. Adaptive meshing techniques for viscous flow calculation on mixed element unstructured meshes[J]. International Journal for Numerical Methods in Fluids, 2000, 34(2):93-111.
[9] SENGUTTUVAN V, CHALASANI S, LUKE E A, et al. Adaptive mesh refinement using general elements:AIAA-2005-0927[R]. Reston:AIAA, 2005.
[10] HE X, ZHANG L P, ZHAO Z, et al. Research and development of structured/unstructured hybrid CFD software[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2013, 30(S):116-120.
[11] HE X, ZHANG L P, ZHAO Z, et al. Validation of the structured/unstructured hybrid CFD software-HyperFLOW[C]//The Eighth International Conference on Computational Fluid Dynamics. Mianyang:China Aerodynamics Research and Development Center, 2014:920-931.
[12] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649.
[13] TRAVIN A, SHUR M, STRELETS M, et al. Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows[C]//Advances in LES of Complex Flows. Berlin:Springer, 2004:239-254.
[14] BUI T T. A parallel, finite-volume algorithm for large-eddy simulation of turbulent flow[J]. Computers & Fluids, 2000, 29(8):877-915.
[15] DENG X B, ZHAO X H, YANG W, et al. Dynamic adaptive upwind method and it's applications in RANS/LES hybrid simulations[C]//The Eighth International Conference on Computational Fluid Dynamics. Mianyang:China Aerodynamics Research and Development Center, 2014:807-814.
[16] XIAO L H, XIAO Z X, DUAN Z W, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[C]//The Eighth International Conference on Computational Fluid Dynamics. Mianyang:China Aerodynamics Research and Development Center, 2014:1055-1073.
[17] 张扬, 张来平, 赫新, 等. 基于非结构/混合网格的脱体涡模拟算法[J]. 航空学报, 2015, 36(9):2900-2910. ZHANG Y, ZHANG L P, HE X, et al. Detached-eddy simulation based on unstructured and hybrid grid[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2900-2910(in Chinese).
[18] ZHANG Y, ZHANG L P, HE X, et al. Detached-eddy simulation of subsonic flow past a delta wing[J]. Procedia Engineering, 2015(126):584-587.
[19] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372.
[20] VENKATAKRISHNAN V. Convergence to steady state solutions of the Euler equations on unstructured grids with limiters[J]. Journal of Computational Physics, 1995, 118(1):120-130.
[21] ZHANG L P, WANG Z J. A block LU-SGS implicit dual time-stepping algorithm for hybrid dynamic meshes[J]. Computers & Fluids, 2004, 33(7):891-916.
[22] ZHANG L P, ZHAO Z, CHANG X H, et al. A 3D hybrid grid generation technique and multigrid/parallel algorithm based on anisotropic agglomeration approach[J]. Chinese Journal of Aeronautics, 2013, 26(1):47-62.
[23] RUMSEY C, WEDAN B, HAUSER T, et al. Recent updates to the CFD General Notation System (CGNS):AIAA-2012-1264[R]. Reston:AIAA, 2012.
[24] CHU J, LUCKRING J M. Experimental surface pressure data obtained on 65° delta wing across Reynolds number and Mach number ranges:NASA-TM-4645[R]. Washington, D. C.:NASA, 1996.

文章导航

/