材料工程与机械制造

航空发动机叶片前后缘自由式砂带抛光技术

  • 张军锋 ,
  • 史耀耀 ,
  • 蔺小军 ,
  • 段继豪
展开
  • 西北工业大学 现代设计与集成制造技术教育部重点实验室, 西安 710072

收稿日期: 2016-04-18

  修回日期: 2016-05-30

  网络出版日期: 2016-06-14

基金资助

国家科技重大专项(2015ZX04001003)

Freestyle belt polishing technology for leading and trailing edges of aero-engine blade

  • ZHANG Junfeng ,
  • SHI Yaoyao ,
  • LIN Xiaojun ,
  • DUAN Jihao
Expand
  • The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2016-04-18

  Revised date: 2016-05-30

  Online published: 2016-06-14

Supported by

National Science and Technology Major Project (2015ZX04001003)

摘要

由于叶片前后缘(LTE)的轮廓形状和表面质量将对航空发动机的气动性能和叶片的疲劳性能产生直接影响,因此为提高前后缘的轮廓度和表面质量,通过对目前航空发动机叶片前后缘抛光所存在的问题进行分析,结合叶片前后缘抛光工艺要求,并基于自由式砂带抛光的工艺特点,提出了叶片前后缘自由式砂带抛光工艺方法;针对该抛光工艺方法,建立其砂带张紧力控制系统,确定了抛光加工中的砂带走刀步长计算公式及抛光轨迹规划方法;最后以某型号叶片的前后缘作为加工对象进行抛光实验研究。检测结果显示:叶片前后缘轮廓度误差小于0.01 mm,其表面粗糙度小于0.4 μm,证实了该抛光工艺方法对提高叶片前后缘的轮廓度和表面质量的有效性。

本文引用格式

张军锋 , 史耀耀 , 蔺小军 , 段继豪 . 航空发动机叶片前后缘自由式砂带抛光技术[J]. 航空学报, 2017 , 38(3) : 420327 -420327 . DOI: 10.7527/S1000-6893.2016.0179

Abstract

As the key part of the blade, the leading and the trailing edges (LTE) play a very important role in aero-engine. The profile of the LTE can directly affect the aerodynamic performance of aero-engine, and its surface quality can largely determine the fatigue life of the blade. To reduce the profile error and improve the surface quality, the problems existing in LTE polishing process are analyzed. Based on the polishing requirements of LTE and the process features of abrasive belt polishing, the method of freestyle belt polishing process with tension force control system for LTE is proposed. The calculation formula for feeding step length and polishing path planning method are obtained. The polishing experiments of a blade are carried out. The test results show that the profile accuracy and surface quality of LTE are improved significantly, with the profile error being less than 0.01 mm and roughness less than 0.4 μm.

参考文献

[1] 李文成. 机械装备失效分析[M]. 北京:冶金工业出版社, 2008:585-586. LI W C. Failure analysis of mechanical equipment[M]. Beijing:Metallurgical Industry Press, 2008:585-586(in Chinese).
[2] 李晓红, 熊华平, 张学军. 先进航空材料焊接技术[M]. 北京:国防工业出版社, 2012:456-457. LI X H, XIONG H P, ZHANG X J. Advanced aviation welding technology[M]. Beijing:National Defence Industry Press, 2012:456-457(in Chinese).
[3] 李金桂, 赵闺彦. 腐蚀和腐蚀控制手册[M]. 北京:国防工业出版社, 1988:165-166. LI J G, ZHAO G Y. Corrosion and corrosion control manual[M]. Beijing:National Defence Industry Press, 1988:165-166(in Chinese).
[4] 赵振业. 高强度合金抗疲劳应用技术研究与发展[J]. 中国工程科学, 2005, 7(3):90-94. ZHAO Z Y. Investigation and development status of the application technology to improve fatigue behavior of high strength alloys[J]. Engineering Science, 2005, 7(3):90-94(in Chinese).
[5] JOURANI A, DURSAPT M, HAMDI H, et al. Effect of the belt grinding on the surface texture:Modeling of the contact and abrasive wear[J]. Wear, 2005, 259(7):1137-1143.
[6] WU S H, KAZEROUNIAN K, GAN Z X, et al. A material removal model for robotic belt grinding process[J]. Machining Science and Technology, 2014, 18(1):15-30.
[7] SONG Y X, LIANG W, YANG Y. A method for grinding removal control of a robot belt grinding system[J]. Journal of Intelligent Manufacturing, 2012, 23(5):1903-1913.
[8] BRINKSMEIER E, RIEMER O, GESSENHARTER A. Finishing of structured surfaces by abrasive polishing[J]. Precision Engineering, 2006, 30(3):325-336.
[9] ALAGUMURTHI N, PALANIRADJA K, SOUNDARARAJAN V. Optimization of grinding process through design of experiment (DOE)-A comparative study[J]. Materials and Manufacturing Processes, 2006, 21(1):19-21.
[10] WANG J T, ZHANG D H, WU B H, et al. Kinematic analysis andfeedrate optimization in six-axis NC abrasive belt grinding of blades[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(1-4):405-414.
[11] BIGERELLE M, GAUTIER A, HAGEGE B, et al. Roughness characteristic length scales of belt finished surface[J]. Journal of Materials Processing Technology, 2009, 209(20):6103-6116.
[12] XIAO G J, HUANG Y. Constant-load adaptive belt polishing of the weak-rigidityblisk blade[J]. The International Journal of Advanced Manufacturing Technology, 2015, 78(9-12):1473-1484.
[13] 肖贵坚, 黄云, 伊浩. 面向型面精度一致性的整体叶盘砂带磨削新方法及实验研究[J]. 航空学报, 2016, 37(5):1666-1676. XIAO G J, HUANG Y, YI H. Experimental research on the new belt grinding method for the consistency of the blisk profile and surface precision[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1666-1676(in Chinese).
[14] 蔺小军, 杨艳, 吴广, 等. 面向叶片型面的五轴联动柔性数控砂带抛光技术[J]. 航空学报, 2015, 36(6):2074-2082. LIN X J, YANG Y, WU G, et al. The research of flexible polishing technology of five-axis NC abrasive belt for blade surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):2074-2082(in Chinese).
[15] 段继豪, 史耀耀, 张军锋, 等. 航空发动机叶片柔性抛光技术[J]. 航空学报, 2012, 33(3):573-578. DUAN J H, SHI Y Y, ZHANG J F, et al. Flexible polishing technology for blade of aviation engine[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3):573-578(in Chinese).
[16] 李大奇, 张雷, 叶卫东, 等. 叶片双面砂带磨削机床及磨削实验研究[J]. 组合机床与自动化加工技术, 2014(12):148-149. LI D Q, ZHANG L, YE W D, et al. Research on double-side machine tool and grinding experiment for blade finishing[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2014(12):148-149(in Chinese).
[17] ZHANG M D, WANG X L. Research of belt grinding machining method and technology for large-scale blade[J]. Hydromechatronics Engineering, 2014, 42(24):62-66.
[18] XIAO G J, HUANG Y. Equivalent self-adaptive belt grinding for the real-R edge of an aero-engine precision-forged blade[J]. The International Journal of Advanced Manufacturing Technology, 2015, 83(9):1697-1706.
[19] LIU Z Y, HUANG Y, WEI H P, et al.Research on the technology of NC abrasive belt grinding for the leading and trailing edges of aero-engine blades[J]. Advanced Materials Research, 2013, 797:67-72.
[20] 张明德, 王加林. 航空发动机叶片边缘柔性抛磨技术研究[J]. 重庆理工大学学报(自然科学), 2015, 29(6):32-36. ZHANG M D, WANG J L. Research on flexible polishing technology for edge of aero-engine blade[J]. Journal of Chongqing University of Technology(Natural Science), 2015, 29(6):32-36(in Chinese).
[21] 郝炜, 蔺小军, 单晨伟, 等. 薄壁叶片前后缘加工误差补偿技术研究[J]. 机械科学与技术, 2011, 30(9):1446-1450. HAO W, LIN X J, SHAN C W, et al. Research on the machining error compensation for the leading and trailing edges of thin-walled blades[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(9):1446-1450(in Chinese).
[22] PRESTON F W. Glass technology[J]. Journal of the Society of Glass Technology, 1927, 11(8):277-281.
[23] 黄云, 黄智. 现代砂带磨削技术及工程应用[M]. 重庆:重庆大学出版社, 2008:2-12, 165-170. HUANG Y, HUANG Z. The modern abrasive belt grinding technology and engineering application[M]. Chongqing:Chongqing University Press, 2008:2-12, 165-170(in Chinese).
[24] 刘雄伟. 数控加工理论与编程技术[M]. 北京:机械工业出版社, 1994:66-70. LIU X W. Theory and programming technology of NC machining[M]. Beijing:China Machine Press, 1994:66-70(in Chinese).
[25] 蔺小军, 单晨伟, 王增强, 等. 航空发动机叶片型面三坐标测量机测量技术[J]. 计算机集成制造系统, 2012, 18(1):125-131. LIN X J, SHAN C W, WANG Z Q, et al. Measurement techniques of coordinate measuring machine for blade surface of aero-engine[J]. Computer Integrated Manufacturing System, 2012, 18(1):125-131(in Chinese).

文章导航

/