气动舵面/RCS复合控制系统构型设计与仿真
收稿日期: 2016-04-12
修回日期: 2016-05-11
网络出版日期: 2016-06-13
Design and simulation of configurations for aerodynamic surfaces/RCS blended control system
Received date: 2016-04-12
Revised date: 2016-05-11
Online published: 2016-06-13
鹿存侃 , 胡永太 . 气动舵面/RCS复合控制系统构型设计与仿真[J]. 航空学报, 2016 , 37(S1) : 106 -111 . DOI: 10.7527/S1000-6983.2016.0167
According to the blended control problem of aerospace vehicle with multiple control effectors during the reentry phase, based on the characteristics of aerodynamic surfaces and pulsed reaction control jets, three different compound controller configurations are proposed:command configuration, moment configuration and command error configuration. The corresponding control laws are also developed to complete the control system design for the reentry phase of aerospace vehicle. Simulation results show that all of the three control systems have strong abilities of tracking command rapidly. The smoothest responding of aerodynamic surface and the least frequency firing of jets are achieved with the command configuration controller. According to the work of effectors, the command configuration controller is the most effective in practice.
[1] 吴了泥. 可重复使用运载器亚轨道再入段制导与控制技术研究[D]. 南京:南京航空航天大学, 2009:4-7. WU L N. Research on guidance and control technology of suborbital reentry for reusable launch vehicle[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009:4-7 (in Chinese).
[2] 王文正. 气动舵面与RCS的复合控制研究[R]. 绵阳:中国空气动力研究与发展中心, 2005:114-117. WANG W Z. Research on composite control using aero control surface and RCS[R]. Mianyang:China Aero Dynamic Research and Develop Center, 2005:114-117 (in Chinese).
[3] 宁国栋, 张曙光, 方振平. 跨大气层飞行器再入段RCS控制特性[J]. 飞行力学, 2005, 23(3):16-20. NING G D, ZHANG S G, FANG Z P. Research on the reaction control system for spacecraft re-entry flight[J]. Flight Dynamics, 2005, 23(3):16-20 (in Chinese).
[4] SHERTZER R H, ZIMPFER D J, BROWN P D. Control allocation for the next generation of entry vehicles[C]//Proceeding of the AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2002:5-8.
[5] 房元鹏. 可重复使用航天器再入段复合控制方法研究[J]. 飞行力学, 2008, 26(1):60-63. FANG Y P. Research on composite control method for reusable launch vehicle[J] Flight Dynamics, 2008, 26(1):60-63 (in Chinese).
[6] 周宇. 重复使用运载器再入段控制技术研究[D]. 南京:南京航空航天大学, 2009:4-7. ZHOU Y. Research on control technology of reentry for reusable launch aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:4-7 (in Chinese).
[7] 刘超逸, 唐硕, 许志. 可重复使用运载器复合控制研究[J]. 计算机仿真, 2013, 30(10):76-80. LIU C Y, TANG S, XU Z. Research on hybrid control for reusable launch vehicle[J]. Computer Simulation, 2013, 30(10):76-80 (in Chinese).
[8] 周锐, 杨晓东, 王军. 具有异构多操纵机构的飞行器复合控制技术[J]. 宇航学报, 2008, 29(4):1297-1301. ZHOU R, YANG X D, WANG J. Blended control of flight vehicle with different kinds of control effectors[J]. Journal of Astronautics, 2008, 29(4):1297-1301 (in Chinese).
[9] BOLENDER M A, DOMAN D B. Nonlinear control allocation using piecewise linear functions[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6):1017-1027.
[10] HU W J, ZHOU J. Design of neural network variable structure reentry control system for reusable launch vehicle[J]. Journal of China Ordnance, 2008, 4(3):191-197.
[11] 潘彦鹏, 周军, 呼卫军. 临近空间飞行器再入段复合控制律设计[J]. 系统工程与电子技术, 2013, 35(11):2364-2369. PAN Y P, ZHOU J, HU W J. Design of the compound control law for near space vehicle reentry[J]. System Engineering and Electronics, 2013, 35(11):2364-2369 (in Chinese).
/
〈 | 〉 |