电子电气工程与控制

吸气式高超声速飞行器鲁棒非奇异Terminal滑模反步控制

  • 王肖 ,
  • 郭杰 ,
  • 唐胜景 ,
  • 徐倩 ,
  • 马悦悦 ,
  • 张尧
展开
  • 1. 北京理工大学 宇航学院, 北京 100081;
    2. 北京宇航系统工程研究所, 北京 100076;
    3. 北京机电工程总体设计部, 北京 100854

收稿日期: 2016-04-05

  修回日期: 2016-06-06

  网络出版日期: 2016-06-12

基金资助

国家自然科学基金(11202024);航空科学基金(2012ZA720002)

Robust nonsingular Terminal sliding mode backstepping control for air-breathing hypersonic vehicles

  • WANG Xiao ,
  • GUO Jie ,
  • TANG Shengjing ,
  • XU Qian ,
  • MA Yueyue ,
  • ZHANG Yao
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China;
    3. Beijing System Design Institute of Electro-Mechanic Engineering, Beijing 100854, China

Received date: 2016-04-05

  Revised date: 2016-06-06

  Online published: 2016-06-12

Supported by

National Natural Science Foundation of China (11202024); Aeronautical Science Foundation of China (2012ZA720002)

摘要

针对含有参数摄动、外界干扰的吸气式高超声速飞行器弹性模型,设计了一种基于新型非线性干扰观测器的Terminal滑模反步控制器。将考虑弹性模态的飞行器纵向模型表示为严格反馈形式,在传统反步法的基础上采用非奇异快速Terminal滑模控制俯仰角与俯仰角速率,优化了反步法的控制结构,并实现了系统的有限时间收敛。基于跟踪微分器设计了一种新型非线性干扰观测器,并与本文所提滑模反步方法相结合,通过对包括虚拟控制量微分信号在内的不确定性进行估计与补偿,进一步提高了控制器的鲁棒性,同时解决了"微分膨胀"问题。基于Lyapunov稳定性理论证明了系统的跟踪误差于有限时间收敛至零。仿真结果表明,该控制器在存在不确定性的情况下,可以实现对参考输入的稳定跟踪。

本文引用格式

王肖 , 郭杰 , 唐胜景 , 徐倩 , 马悦悦 , 张尧 . 吸气式高超声速飞行器鲁棒非奇异Terminal滑模反步控制[J]. 航空学报, 2017 , 38(3) : 320287 -320287 . DOI: 10.7527/S1000-6893.2016.0182

Abstract

A new nonlinear disturbance observer based Terminal sliding mode backstepping controller is proposed for flexible air-breathing hypersonic vehicles with parameter perturbations and external disturbances. The longitudinal vehicle model considering the elastic mode is expressed as strict feedback form. On the basis of traditional backstepping method, the nonsingular fast Terminal sliding mode is introduced to control the pitch angle and pitch rate, thus optimizing the control structure and enabling the system with finite time convergence property. A new nonlinear disturbance observer developed from tracking differentiator is then introduced to estimate and compensate the uncertainties including the derivatives of virtual control laws to improve the robustness of the controller, which avoids the explosion of differentiation terms. The system tracking error is proven to converge to zero in finite time with Lyapunov stability theory. Simulations demonstrate the effectiveness of tracking input commands with the designed controller in the presence of uncertainties.

参考文献

[1] HANK J M, MURPHY J S, MUTZMAN R C. The X-51A scramjet engine flight demonstration program:AIAA-2008-2540[R]. Reston:AIAA, 2008.
[2] 孙长银, 穆朝絮, 余瑶. 近空间高超声速飞行器控制的几个科学问题研究[J]. 自动化学报, 2013, 39(11):1901-1913. SUN C Y, MU C X, YU Y. Some control problems for near space hypersonic vehicles[J]. Acta Automatica Sinica, 2013, 39(11):1901-1913(in Chinese).
[3] 方洋旺, 柴栋, 毛东辉, 等. 吸气式高超声速飞行器制导与控制研究现状及发展趋势[J]. 航空学报, 2014, 35(7):1776-1786. FANG Y W, CHAI D, MAO D H, et al. Status and development trend of the guidance and control for air-breathing hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinca, 2014, 35(7):1776-1786(in Chinese).
[4] FIORENTINI L. Nonlinear adaptive controller design for air-breathing hypersonic vehicles[D]. Columbus:The Ohio State University, 2010:79-81.
[5] FIORENTINI L, SERRANI A,BOLENDER M A, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2):402-417.
[6] SUN C, HUANG Y, QIAN C, et al. On modeling and control of a flexible air-breathing hypersonic vehicle based on LPV method[J]. Frontiers of Electrical and Electronic Engineering, 2012, 7(1):56-68.
[7] ZONG Q, WANG J, TIAN B, et al. Quasi-continuous high-order sliding mode controller and observer design for flexible hypersonic vehicle[J]. Aerospace Science and Technology, 2013, 27(1):127-137.
[8] 高道祥, 孙增圻, 罗熊, 等. 基于Backstepping的高超声速飞行器模糊自适应控制[J]. 控制理论与应用, 2008, 25(5):805-810. GAO D X, SUN Z Q, LUO X, et al. Fuzzy adaptive control for hypersonic vehicle via Backstepping method[J]. Control Theory & Applications, 2008, 25(5):805-810(in Chinese).
[9] BU X W, WU X Y, MA Z, et al. Nonsingular direct neural control of air-breathing hypersonic vehicle via backstepping[J]. Neurocomputing, 2015, 153(1):164-173.
[10] QI R Y, HUANG Y, JIANG B, et al. Adaptive backstepping control for hypersonic vehicle with uncertain parameters and actuator faults[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2012, 227(1):51-61.
[11] SWAROOP D, HEDRICK J K, YIP P P, et al. Dynamic surface control for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(10):1893-1899.
[12] ZONG Q, WANG F, TIAN B, et al. Robust adaptive dynamic surface control design for a flexible air-breathing hypersonic vehicle with input constraints and uncertainty[J]. Nonlinear Dynamics, 2014, 78(1):289-315.
[13] FARRELL J A, POLYCARPOU M, SHARMA M, et al. Command filtered backstepping[J]. IEEE Transactions on Automatic Control, 2009, 54(6):1391-1395.
[14] 路遥, 董朝阳, 王青. 高超声速飞行器自适应反步控制器设计[J]. 航空学报, 2015, 36(3):970-978. LU Y, DONG C Y, WANG Q. Adaptive backstepping controller design for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):970-978(in Chinese).
[15] 马悦悦, 唐胜景, 郭杰. 基于ESO的复合滑模面非奇异Terminal滑模控制[J]. 控制与决策, 2015, 30(1):76-80. MA Y Y, TANG S J, GUO J. Nonsingular terminal sliding mode control with compound sliding surface based on ESO[J]. Control and Decision, 2015, 30(1):76-80(in Chinese).
[16] YANG L, YANG J Y. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. International Journal of Robust and Nonlinear Control, 2011, 21(16):1865-1879.
[17] 熊少锋, 王卫红, 王森. 带攻击角度约束的非奇异快速终端滑模制导律[J]. 控制理论与应用, 2014, 31(3):269-279. XIONG S F, WANG W H, WANG S. Nonsingular fast terminal sliding-mode guidance with intercept angle constraint[J]. Control Theory & Applications, 2014, 31(3):269-279(in Chinese).
[18] CHEN W H. Nonlinear disturbance observer enhanced dynamic inversion control of missiles[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1):161-166.
[19] SUN H B, LI S H, YANG J, et al. Nonlinear disturbance observer-based backstepping control for airbreathing hypersonic vehicles with mismatched disturbances[J]. IET Control Theory and Applications, 2014, 8(17):1852-1865.
[20] 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1):19-23. HAN J Q. Auto-disturbances-rejection controller and it's applications[J]. Control and Decision, 1998, 13(1):19-23(in Chinese).
[21] GUO B Z, ZHAO Z L. On the convergence of an extended state observer for nonlinear systems with uncertainty[J]. Systems & Control Letters, 2011, 60(6):420-430.
[22] RAN M P, WANG Q, DONG C Y. Stabilization of a class of nonlinear systems with actuator saturation via active disturbance rejection control[J]. Automatica, 2016, 63:302-310.
[23] YU S, YU X, SHIRINZADEH B, et al. Continuous finite time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11):1957-1964.
[24] POLYAKOV A, FRIDMAN L. Stability notions and Lyapunov functions for sliding mode control systems[J]. Journal of the Franklin Institute, 2014, 351(4):1831-1865.
[25] 周涛. 基于反双曲正弦函数的跟踪微分器[J]. 控制与决策, 2014, 29(6):1239-1242. ZHOU T. Tracking differentiator based on inverse hyperbolic sine function[J]. Control and Decision, 2014, 29(6):1239-1242(in Chinese).
[26] BU X Y, WU X Y, CHEN Y, et al. Design of a class of new nonlinear disturbance observers based on tracking differentiators for uncertain dynamic systems[J]. International Journal of Control, Automation and Systems, 2015, 13(3):595-602.

文章导航

/