航空声学风洞3/4开口试验平台地板对远场噪声测量的影响
收稿日期: 2016-01-22
修回日期: 2016-06-01
网络出版日期: 2016-06-12
基金资助
国家自然科学基金(11504417)
Influence of a 3/4 open jet floor on far field noise measurements in aeroacoustic wind tunnel
Received date: 2016-01-22
Revised date: 2016-06-01
Online published: 2016-06-12
Supported by
National Natural Science Foundation of China (11504417)
利用Kirchhoff-Helmholtz声学理论建立了地板声波反射问题的时域理论模型,推导了地板面上反射波的幅值函数和延迟时间的表达式,并引入了恰当的数值方法对反射声场进行求解,理论方法的正确性得到了实验结果的验证。以典型的高斯调制正弦波脉冲和连续正弦波为例,用建立的理论方法对噪声信号的传播过程和平台地板对远场噪声测量的影响进行了数值模拟研究,结果表明:地板的存在将使得远场接收到的噪声信号中出现直达波和反射波,反射波包含了中心波和边缘波。在低频段,地板宽度增加,远场噪声声压级增大;在高频段,地板宽度增加对远场总噪声级影响不明显。对于高速列车(HST)模型,车底位置的声源比车顶位置的声源在高频段受到地板反射的影响更大。
关键词: 声学风洞; 3/4开口地板; 噪声测量; 声场; Kirchhoff-Helmholtz方法
张军 , 陈鹏 , 雷红胜 , 张俊龙 , 李征初 . 航空声学风洞3/4开口试验平台地板对远场噪声测量的影响[J]. 航空学报, 2016 , 37(8) : 2574 -2582 . DOI: 10.7527/S1000-6893.2016.0184
Based on the Kirchhoff-Helmholtz diffraction theory, a transient theoretical model for the reflection of spherical sound wave from a 3/4 open jet floor is built, and the amplitude shading and time delay function for the reflection sound pressure on the floor is derived. A numerical method is introduced to solve the reflection sound field. The correctness of the presented method is verified by an experiment. In this study, sin-burst pulse and continuous sinusoidal wave are used to study the propagation of the sound wave and the influence of the 3/4 open jet floor on the far field noise measurements, respectively, and the following results are obtained:the received sound signal contains the directed wave and reflection wave, and the reflection wave is further divided into the center wave and edge wave. In the low frequency range, when the floor width increases, the far field sound pressure level increases accordingly, while in the high frequency range, increasing the floor width has non-obvious effect on the far field noise level. For a high speed train (HST) model, the bogie noise source is easier to be influenced by the floor than the pantograph noise source.
[1] 刘加利. 高速列车气动噪声特性分析与降噪研究[D]. 成都:西南交通大学, 2013:27-35. LIU J L. Study on characteristics analysis and control of aeroacoustics of high-speed trains[D]. Chengdu:Southwest Jiaotong University, 2013:27-35(in Chinese).
[2] 高阳, 王毅刚, 杨志刚, 等. 声学风洞中的高速列车模型气动噪声试验研究[J]. 声学技术, 2013, 32(6):506-510. GAO Y, WANG Y G, YANG Z G, et al. Testing study of aerodynamic noise for high speed train model in aero-acoustic wind tunnel[J]. Technical Acoustics, 2013, 32(6):506-510(in Chinese).
[3] 杨志刚, 李保林, 王毅刚. 支撑地板对高速列车模型风洞气动噪声试验影响[J]. 声学技术, 2013, 32(6):500-505. YANG Z G, LI B L, WANG Y G. Influence of supporting plate on aero-acoustic wind tunnel test for high speed train[J]. Technical Acoustics, 2013, 32(6):500-505(in Chinese).
[4] ZHANG J, ZENG X W. Transient axial solution for the reflection of a spherical acoustic pulse from a concave rigid parabolic reflector[J]. Acta Acustica United with Acustica, 2013, 99(6):867-875.
[5] 张军, 曾新吾. 沿抛物面轴线球面波反射声场的时域解析解[J]. 声学技术, 2013, 32(S1):53-54. ZHANG J, ZENG X W. Transient axial solution for the reflection of a spherical wave from a parabolic reflector[J]. Technical Acoustics, 2013, 32(S1):53-54(in Chinese).
[6] 冯峰, 王强. 基于Kirchhoff方法的亚声速平面混合层主涡对并声场分析[J]. 航空学报, 2013, 34(3):467-473. FENG F, WANG Q. Analysis of acoustic field of primary vortex pairing in subsonic plane mixing layers using Kirchhoff method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):467-473(in Chinese).
[7] 侯宏, 王冲, 杨建华, 等. 多声源的自由场有源声吸收[J]. 声学学报, 1994, 19(3):188-195. HOU H, WANG C, YANG J H, et al. Active noise absorption by multisources in free field[J]. Acta Acoustica Sinica, 1994, 19(3):188-195(in Chinese).
[8] LASOTA H, SALAMON R, DELANNOY B. Acoustic diffraction analysis by the impulse response method:A line impulse response approach[J]. Journal of the Acoustical Society of America, 1984, 76(1):280-290.
[9] SKUDRZYK S. The foundations of acoustics[M]. New York:Springer-Verlag, 1971:Chap.3.
[10] DELANNOY B, LASOTA H, BRUNNEL C. The infinite planar baffles problem in acoustic radiation and its experimental verification[J]. Journal of Applied Physics, 1979, 50(8):5189-5195.
[11] PIWAKOWSKI B, DELANNOY B. Method for computing spatial pulse response:Time-domain approach[J]. Journal of the Acoustical Society of America, 1989, 86(6):2422-2432.
[12] PIWAKOWSKI B, SBAI K. A new approach to calculate the field radiate from arbitrarily structured transducer arrays[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 1999, 46(2):422-440
[13] FRANCO E E, ANDRADE M A B, ADAMOWSKI J C, et al. Acoustic beam modeling of ultrasonic transducers and arrays using the impulse response and the discrete representation methods[J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2011, 33(4):408-416.
[14] LUCAS B G, MUIR T G. The field of a focusing source[J]. Journal of the Acoustical Society of America, 1982, 73(4):1289-1296.
[15] 张军, 郭涛, 孙帮成, 等. 高速列车气动噪声源特性研究[J]. 铁道学报, 2015, 37(6):10-18. ZHANG J, GUO T, SUN B C, et al. Research on characteristics of aerodynamic noise source for high-speed train[J]. Journal of the China Railway Society, 2015, 37(6):10-18(in Chinese).
[16] 孙振旭, 宋婧婧, 安亦然. CRH3型高速列车气动噪声数值模拟研究[J]. 北京大学学报, 2012, 48(5):701-711. SUN Z X, SONG J J, AN Y R. Numerical simulation of aerodynamic noise generated by CRH3 high speed trains[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 48(5):701-711(in Chinese).
/
〈 | 〉 |