流体力学与飞行力学

网格拓扑对DLR-F6构型数值模拟的影响

  • 李伟 ,
  • 孟德虹 ,
  • 洪俊武 ,
  • 李桦
展开
  • 1. 国防科学技术大学 航天科学与工程学院, 长沙 410073;
    2. 中国空气动力研究与发展中心 计算空气动力学研究所, 绵阳 621000

收稿日期: 2016-03-02

  修回日期: 2016-05-26

  网络出版日期: 2016-06-02

基金资助

国家重点研发计划(2016YFB0200700)

Effect of mesh topology on numerical simulation of DLR-F6 configuration

  • LI Wei ,
  • MENG Dehong ,
  • HONG Junwu ,
  • LI Hua
Expand
  • 1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;
    2. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2016-03-02

  Revised date: 2016-05-26

  Online published: 2016-06-02

Supported by

National Key Research and Development Program (2016YFB0200700)

摘要

基于TRIP3.0软件平台和多块结构网格技术,开展了控制方程和网格拓扑等因素对DLR-F6构型数值模拟的影响研究。数值计算采用与试验相同的参数,采用了RANS/TLNS方程,生成了O型和H型2种拓扑的粗、中、细网格进行模拟。分别从气动特性、压力系数分布曲线和表面流态3个方面对结果进行分析。通过与试验数据的对比表明,在模拟小分离流动时,采用H型拓扑网格和RANS方程模型,获得的计算结果会更为准确。

本文引用格式

李伟 , 孟德虹 , 洪俊武 , 李桦 . 网格拓扑对DLR-F6构型数值模拟的影响[J]. 航空学报, 2017 , 38(2) : 120177 -120183 . DOI: 10.7257/S1000-6893.2016.0168

Abstract

Based on the TRIP 3.0(TRIsonic Platform V3.0) software and structure grid technology, the effects of different mesh topologies and control equations on aerodynamic characters of DLR-F6 wing-body configuration are studied. The study is implemented with the RANS/TLNS equations, as the same parameters of the experiment are used. Coarse, medium and fine meshes of O and H topologies are also generated for the simulation.The effects on the simulation of DLR-F6 wing-body configuration are studied from aerodynamic characters, pressure coefficient distribution curve and flow pattern on the surface. Compared with experimental data, the numerical results indicate that more accurate results can be obtained by adopting the H topology mesh and RANS equations on the simulations of flow field with small separation zone.

参考文献

[1] OBERKAMPF W L, TRUCANO T G. Verification and validation in computational fluid dynamics[J]. Progress in Aerospace Sciences, 2002, 38(3):209-272.
[2] HAASE W, CHAPUT E, LESCHZINER M A. ECARP-European computational aerodynamics research project:Validation of CFD codes and assessment of turbulence models[R]. Wiesbaden:Vieweg & Sohn Verlagsgesellschaft mbH, 1997.
[3] LEVY D W, ZICKUHR T, VASSBERG J C, et al. Summary of data from the first AIAA CFD drag prediction workshop:AIAA-2002-0841[R]. Reston:AIAA, 2002.
[4] LAFLIN K R, KLAUSMEYER S M, ZICKUHR T, et al. Data summary from the second AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2005, 42(9):1165-1178.
[5] VASSBERG J C, TINOCO E N, MANI M, et al. Abridged summary of the third AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2008, 45(6):781-798.
[6] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the fourth AIAA CFD drag prediction workshop:AIAA-2010-4547[R]. Reston:AIAA, 2010.
[7] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the fifth AIAA CFD drag prediction workshop:AIAA-2013-0046[R]. Reston:AIAA, 2013.
[8] RUMSEY C L, RIVERS S M, MORRISON J H. Study of CFD variation on transport configurations from the second drag prediction workshop[J]. Computer & Fluids, 2005, 34(7):785-816.
[9] PENG S H, ELIASSON P. A comparison of turbulence models in prediction of flow around the DLR-F6 aircraft configuration:AIAA-2004-4718[R]. Reston:AIAA, 2004.
[10] MIRSUHIRO M, KAZUOMI Y. Comparison study of drag prediction by structured and unstructured mesh method[J]. Journal of Aircraft, 2008, 45(3):799-822.
[11] GODARD J L. F6 model tests in the ONERA S2MA wind tunnel[C]//Presented at the second AIAA CFD drag prediction workshop, Reston:AIAA, 2003.
[12] GATLIN G M, RIVERS M B, GOODLIFT S L, et al. Experimental invetigation of the DLR-F6 transport configuration in the national transonic facility(Invited):AIAA-2008-6917[R]. Reston:AIAA, 2008.
[13] VASSBERG J C, TINOCO E N, MANI M, et al. Comparison of NTF experimental data with CFD predictions from the third AIAA CFD drag prediction workshop:AIAA-2008-6918[R]. Reston:AIAA, 2008.
[14] RUDNIK R, SITZMANN M, GODARD J L, et al. Experimental invetigation of the wing-body juncture flow on the DLR-F6 configuration in the ONERA S2MA facility:AIAA-2009-4113[R]. Reston:AIAA, 2009.
[15] 王运涛, 李松, 孟德虹, 等. 梯形翼高升力构型的数值模拟技术研究[J]. 航空学报, 2014, 35(12):3213-3221. WANG Y T, LI S, MENG D H, et al. Numerical simulation technology of high lift trapezoidal wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3213-3221(in Chinese).
[16] 王运涛, 王光学, 张玉伦. 采用TRIP2.0软件计算DLR_F6构型的阻力[J]. 空气动力学学报, 2009, 27(1):108-113. WANG Y T, WANG G X, ZHANG Y L. Drag prediction of DLR-F6 configuration with TRIP2.0 software[J]. Acta Aerodynamica Sinica, 2009, 27(1):108-113(in Chinese).
[17] 王运涛, 王光学, 张玉伦. 采用TRIP2.0软件的确认:DPWII复杂组合体的数值模拟[J]. 航空学报, 2008, 29(1):34-40. WANG Y T, WANG G X, ZHANG Y L. Validation of TRIP2.0:numerical simulation of DPWII complex configuration[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1):34-40(in Chinese).
[18] 王运涛, 张玉伦, 洪俊武, 等. TRIP2.0_SOLVER的开发与应用[J]. 空气动力学学报, 2007, 25(2):163-168. WANG Y T, ZHANG Y L, HONG J W, et al. Development and application of TRIP2.0_SOLVER[J]. Acta Aerodynamica Sinica, 2007, 25(2):163-168(in Chinese).
[19] 王光学, 王运涛. TRIP2.0软件湍流模块的开发与确认[J]. 航空计算技术, 2007, 37(3):20-23. WANG G X, WANG Y T. Development and validation of turbulence models of TRIP2.0[J]. Aeronautical Computing Technique, 2007, 37(3):20-23(in Chinese).
[20] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[21] TINOCO E N. Drag prediction with the Zeus/CFL3D system:AIAA-2004-0552[R]. Reston:AIAA, 2004.
[22] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the fourth AIAA CFD drag prediction workshop:AIAA-2010-4547[R]. Reston:AIAA, 2010.

文章导航

/