低马赫数下多凹腔燃烧室非稳态燃烧过程
收稿日期: 2016-04-23
修回日期: 2016-05-13
网络出版日期: 2016-05-30
基金资助
航空科学基金(2014ZA27010)
Unsteady combustion process in multi-cavity combustor at low Mach number condition
Received date: 2016-04-23
Revised date: 2016-05-13
Online published: 2016-05-30
Supported by
Aeronsutical Science Foundation of China (2014ZA27010)
作为稳定火焰的有效手段之一,凹腔构型在冲压发动机燃烧室研究中占有重要地位。在对以煤油为燃料的多凹腔燃烧室冷/热态流动特性分析的基础上,重点研究低进口马赫数条件下燃烧室点火起动初期非稳态过程。结果表明:上游凹腔内大涡结构有助于提高燃料的驻留时间,未燃混气被高速主流带入下游凹腔内继续反应,进一步提高燃烧效率;燃油喷射速度决定被卷吸进回流区的燃油质量分数的大小,进而影响燃烧效率高低;燃烧室点火起动初期出现了主流熄火、火焰逆流传播以及主流再着火等复杂现象,火焰逆流传播现象是在上游凹腔内燃料自燃与下游燃烧释热压缩来流两种机制共同作用下完成的。
王璐 , 高亮杰 , 钱战森 , 赵勇 . 低马赫数下多凹腔燃烧室非稳态燃烧过程[J]. 航空学报, 2016 , 37(S1) : 112 -118 . DOI: 10.7527/S1000-6893.2016.0149
As one of the most effective structures of flame stabilizer, cavity plays an important role in the research on ramjet combustors. Flow field characteristics of the kerosene-fueled multi-cavity ramjet combustor are analyzed without and with combustion in this paper. The unsteady combustion flow field in the combustor is discussed in particular at the initial stage of ignition start-up at low inlet Mach numbers. The results show that the fuel residence time is increased by the bigger vortex in the upstream cavity. The unburned fuel is blown off to the downstream cavity for a further combustion as soon as it meets the high-speed main stream, which is helpful to improve combustion efficiency. The mass of kerosene drifted into cavities is determined by fuel-jet velocity, which would have an indirect effect on the combustion efficiency. At the beginning of the ignition start-up, the phenomena of mainstream blowout, countercurrent flame propagation and mainstream reburning appeared in the unsteady numerical study. The mechanisms of the countercurrent flame propagation are both slow reaction in first cavity and the downstream heat release.
[1] WALTRUP P J. Liquid fueled supersonic combustion ramjets:a research perspective of the past, present and future:AIAA-1986-0158[R]. Reston:AIAA, 1986.
[2] SIKRORIA T, KUSHARI A, SYED S, et al. Experimental investigation of liquid jet breakup in a cross flow of a swirling air stream[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(6):061501.
[3] CHAULIN A, DANIEL E, CHINNAYYA A, et al. Shock waves in sprays:numerical study of secondary atomization and experimental comparision[J]. Shock Waves, 2015, 26(4):403-415.
[4] LADA C, KONTIS K. Fluidic control of cavity configurations at subsonic and supersonic speeds:AIAA-2005-1293[R]. Reston:AIAA, 2005.
[5] ZHUANG N, ALVI F S, SHIH C. Another look at supersonic cavity flows and their control:AIAA-2005-2803[R]. Reston:AIAA, 2005.
[6] BARNES F W, SEGAL C. Cavity-based flameholding for chemically-reacting supersonic flows[J]. Progress in Aerospace Sciences, 2015,76:24-41.
[7] HSU K, GOSS L, TRUMP D. Performance of a trapped-vortex combustor:AIAA-1995-0810[R]. Reston:AIAA, 1995.
[8] ROQUEMORE W, SHOUSE D, BURRUS D, et al. Vortex combustor concept for gas turbine engines:AIAA-2001-0483[R]. Reston:AIAA, 2001.
[9] JIN Y, HE X, ZHANG J, et al. Experimental study on emission performance of a LPP/TVC[J]. Chinese Journal of Aeronautics, 2012, 25(3):335-341.
[10] ZHANG X, EDWARDS J A. Experimental investigation of supersonic flow over two cavities in tandem[J]. AIAA Journal, 1992, 30(5):1182-1190.
[11] BAO H, ZHOU J, PAN Y, et al. Spark ignition of liquid kerosene in scramjet combustor equipped with partly-covered cavity[J]. Journal of Propulsion and Power, 2015, 31(4):1014-1018.
[12] MCDANIEL J C, CHELLIAH H, GOYNE C P, et al. US national center for hypersonic combined cycle propulsion:an overview:AIAA-2009-7280[R]. Reston:AIAA, 2009.
[13] FETTERHOFF T, BURFITT J. Overview of the advanced propulsion test technology hypersonic aero propulsion clean air test:AIAA-2011-2279[R].Reston:AIAA, 2011.
[14] HASSAN E. Multi-fluid dynamics for supersonic jet-and-crossflows and liquid plug rupture[D]. Ann Arbor:University of Michigan, 2012:25-40.
[15] SEVCENCO Y A, MOJARRAD M G, MARSH R, et al. Integrating hypersonics into a combustion test facility with 3D viewing capability:AIAA-2015-3654[R].Reston:AIAA,2015.
[16] 邓维鑫. 宽范围马赫数超燃冲压发动机燃烧组织技术研究[D]. 成都:西南交通大学, 2013:41-53. DENG W X. Research on combustion organizing technology of scramjet in wide range Mach number[D]. Chengdu:Southwest Jiaotong University, 2013:41-53(in Chinese).
[17] VEYNANTE D, VERVISCH L. Turbulent combustion modeling[J]. Progress in Energy and Combustion Science, 2002(28):193-266.
[18] 中国科学院高超声速科技中心. CASH-001:直联式超声速模型燃烧室[EB/OL]. (2010-03-09)[2016-04-23]. http://www.hrccas.com/newshow.asp?pkid=26.
[19] WILCOX D C. Turbulent modeling for CFD[M]. California:DCW Industries, 2000:74-80.
[20] O'BYRNE S, DOOLAN M, OLSEN S, et al. Analysis of transient thermal choking process in a model scramjet engine[J]. Journal of Propulsion and Power, 2000, 16(5):808-814.
[21] MITANI T, KOUCHI T. Flame structures and combustion efficiency computed for a Mach 6 scramjet engine[J]. Combustion and Flame, 2005, 142(3):187-196.
[22] 潘余. 超燃冲压发动机多凹腔燃烧室燃烧与流动过程研究[D]. 长沙:国防科学技术大学, 2007:23-52. PAN Y. Research on the combustion and flow process in the scramjet multi-cavity combustor[D]. Changsha:National University of Defense Technology, 2007:23-52(in Chinese).
/
〈 | 〉 |