方形截面飞行器上仰机动对滚转特性影响的数值模拟
收稿日期: 2016-04-21
修回日期: 2016-05-14
网络出版日期: 2016-05-23
基金资助
国家自然科学基金(11372341,11532016)
Numerical simulation of rolling characteristics in nose-up process of square cross section vehicle
Received date: 2016-04-21
Revised date: 2016-05-14
Online published: 2016-05-23
Supported by
National Natural Science Foundation of China (11372341, 11532016)
飞行器从中小迎角至大迎角范围内,由于背风区流动分离形态的演化,静态气动特性特别是横侧向气动特性也随迎角显著变化,可能诱发复杂的滚转运动。但飞行器一般是上仰机动时,才从平飞状态快速拉起至大迎角,此机动过程对横侧向气动特性和滚转运动可能产生较大影响。本文发展了刚体动力学方程和Navier-Stokes方程的松耦合求解技术,并通过数值模拟航天飞机脱落碎片的六自由度运动轨迹进行了验证。针对背风区涡流形态及横侧向气动特性复杂的方形截面飞行器,数值模拟研究了其不同迎角下的静态滚转气动特性、自由滚转运动特性,以及上仰机动时不同拉起速率对滚转运动特性的影响。结果表明,对于此飞行器,静态时存在临界迎角约为13°,当迎角小于临界迎角时,滚转方向是静不稳定的,诱发快速滚转运动;当迎角大于临界迎角时,滚转方向是静稳定的,其滚转运动是收敛的。但上仰机动时,滚转运动的形态还与拉起速率相关,即使拉起的终止迎角大于临界迎角,如果拉起速率较慢,也可能出现快速滚转运动。
陈坚强 , 陈琦 , 袁先旭 , 谢昱飞 . 方形截面飞行器上仰机动对滚转特性影响的数值模拟[J]. 航空学报, 2016 , 37(8) : 2565 -2573 . DOI: 10.7527/S1000-6893.2016.0150
The vortex of the flow separation at the leeward site is varying momently as the vehicle pulls up to high angles of attack, which may induce strong unsteady effect of aerodynamics and additional lateral aerodynamics. The vehicle is pulled up rapidly from level-off to high angle of attack flight in the nose-up process, which may has prominent effect on the lateral aerodynamics and the rolling motion. To study the unsteady effect of aerodynamics and its influence to rolling characteristics, the loose couple technique of rigid body dynamic equations and Navier-Stockes equations was developed. The established loose couple technique was then validated by simulating the 6-degree of freedom trajectory of debris shedding from the space shuttle. Taking the square cross section vehicle as example, the steady rolling aerodynamic characteristics, free rolling characteristics and the effect of nose-up process at different speeds to rolling characteristics of the aircraft were studied. The results showed that there was a critical attack angle about 13° existing in the free rolling motion, when the attack angle was greater than the critical attack angle, the vehicle was in rapid rolling motion, and when the attack angle was lower than the critical attack angle, the rolling motion was stable. While in the nose-up process, the rolling characteristics were also affected by the pulling velocity, the vehicle could be in rapid rolling motion under the slow pulling speed even the final attack angle was greater than the critical attack angle.
[1] MAGILL J C, WEHE S D. Initial test of a wire suspension mount for missile virtual flight testing:AIAA-2002-0169[R]. Reston:AIAA, 2002.
[2] MAGILL J C, CATALDI P, MORENCY J R, et al. Demonstration of a wire suspension system for dynamic wind tunnel testing:AIAA-2004-1296[R]. Reston:AIAA, 2004.
[3] MAGILL J C, CATALDI P, MORENCY J R, et al. Design of a wire suspension system for dynamic testing in AEDC 16T:AIAA-2003-0452[R]. Reston:AIAA, 2003.
[4] REIN M, HÖHLER G, SCHVTTE A, et al. Ground-based simulation of complex maneuvers of a delta-wing aircraft[J]. Journal of Aircraft, 2008, 45(1):1-7.
[5] BERGMANN A, HUEBNER A, LOESER T. Integrated experimental and numerical research on the aerodynamics of unsteady moving aircraft[J]. Progress in Aerospace Sciences, 2008, 44(2):121-137.
[6] 李志强, 黄达, 史志伟, 等. 俯仰-滚转耦合两自由度大振幅非定常实验技术[J]. 南京航空航天大学学报, 1999, 31(2):121-126. LI Z Q, HUANG D, SHI Z W, et al. Test technology of unsteady aerodynamic characteristic for a model oscillating in large amplitude pitching-rolling motion[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1999, 31(2):121-126(in Chinese).
[7] 李其畅, 伍开元, 郑世华, 等. 高速风洞大振幅俯仰动态试验技术研究[J]. 流体力学实验与测量, 2004, 18(4):67-77. LI Q C, WU K Y, ZHENG S H, et al. Investigation of dynamic test technology for a model pitching oscillation with large amplitude in high speed wind tunnels[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(4):67-77(in Chinese).
[8] 王兵, 黄存栋, 马宝峰, 等. 精确复现机翼摇滚运动的控制技术[J]. 实验流体力学, 2009, 23(1):79-84. WANG B, HUANG C D, MA B F, et al. The control method of precise reproduction of the wing rock motion[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(1):79-84(in Chinese).
[9] 吕光男. 风洞虚拟飞行试验中的飞行力学与控制问题研究[D]. 南京:南京航空航天大学, 2009:19-37. LV G N. Research on a flight dynamics and control in wind tunnel based virtual flight test[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009:19-37(in Chinese).
[10] 胡静, 李潜. 风洞虚拟飞行试验技术初步研究[J]. 实验流体力学, 2010, 24(1):95-99. HU J, LI Q. Primary investigation of the virtual flight testing techniques in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):95-99(in Chinese).
[11] 陈星阳, 郑鵾鹏. 风洞虚拟飞行试验控制系统设计[J]. 弹箭与制导学报, 2013, 33(6):129-132. CHEN X Y, ZHENG K P. The design of wind tunnel based virtual flight testing control system[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(6):129-132(in Chinese).
[12] 向光伟, 谢斌, 赵忠良, 等. 2.4 m×2.4 m跨声速风洞虚拟飞行试验天平研制[J]. 实验流体力学, 2014, 28(1):65-69. XIANG G W, XIE B, ZHAO Z L, et al. Development of virtual flight test balance for 2.4 m×2.4 m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(1):65-69(in Chinese).
[13] 赵忠良, 任斌, 汪清, 等. 风洞模型自由翻滚试验技术[J]. 空气动力学学报, 2000, 18(4):384-389. ZHAO Z L, REN B, WANG Q, et al. Wind tunnel test technique of the model free-to-tumble[J]. Acta Aerodynamica Sinica, 2000, 18(4):384-389(in Chinese).
[14] 陶洋, 赵忠良, 杨海泳. 翼身组合体摇滚特性高速试验研究[J]. 实验流体力学, 2011, 25(6):45-48. TAO Y, ZHAO Z L, YANG H Y. Investigation on wing rock of wing-body configuration at high speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6):45-48(in Chinese).
[15] 李浩. 风洞虚拟飞行试验相似准则和模拟方法研究[D]. 绵阳:中国空气动力研究与发展中心, 2012:46-75. LI H. Study on the similarity criteria and simulation method of the wind tunnel based virtual flight testing[D]. Mianyang:China Aerodynamics Research and Development Center, 2012:46-75(in Chinese).
[16] THOMAS J P, DOWELL E H, HALL K C. Modeling viscous transonic limit cycle oscillation behavior using a harmonic balance approach[J]. Journal of Aircraft, 2004, 41(6):1266-1274.
[17] THOMAS J P, DOWELL E H, HALL K C, et al. Further investigation of modeling limit cycle oscillation behavior of the F-16 fighter using a harmonic balance approach:AIAA-2004-1696[R]. Reston:AIAA,2004.
[18] THOMAS J P, CUSTER C H, DOWELL E H, et al. Unsteady flow computation using a harmonic balance approach implemented about the OVERFLOW 2 flow solver:AIAA-2009-4270[R]. Reston:AIAA, 2009.
[19] 杨小亮. 飞行器多自由度耦合摇滚运动数值模拟研究[D]. 长沙:国防科学技术大学, 2012:150-166. YANG X L. Numerical investigation of aircraft rock in multiple degrees of freedom[D]. Changsha:National University of Defense Technology, 2012:150-166(in Chinese).
[20] 杨小亮, 刘伟, 赵云飞, 等. 80° 后掠三角翼强迫俯仰、自由滚转双自由度耦合运动特性数值研究[J]. 空气动力学学报, 2011, 29(4):421-426. YANG X L, LIU W, ZHAO Y F, et al. Numerical investigation of the characteristics of double degree-of-freedom motion of an 80° delta wing in force-pitch and free-roll[J]. Acta Aerodynamica Sinica, 2011, 29(4):421-426(in Chinese).
[21] 杨小亮, 赵云飞, 刘伟. 多种因素对三角翼俯仰/滚转运动特性影响的数值研究[J]. 力学季刊, 2011, 32(1):28-34. YANG X L, ZHAO Y F, LIU W. Numerical investigation of multiple sensitive factors of the characteristics of the slender delta wing in force-pitch and free-roll motion[J]. Chinese Quarterly of Mechanics, 2011, 32(1):28-34(in Chinese).
[22] 杨云军, 崔尔杰, 周伟江. 细长三角翼滚转/侧滑耦合运动的数值研究[J]. 航空学报, 2007, 28(1):14-19. YANG Y J, CUI E J, ZHOU W J. Numerical research on roll and sideslip coupling motions about a slender delta-wing[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):14-19(in Chinese).
[23] 张来平, 马戎, 常兴华, 等. 虚拟飞行中气动、运动和控制耦合的数值模拟技术[J]. 力学进展, 2014, 44(10):376-417. ZHANG L P, MA R, CHANG X H, et al. Review of aerodynamics/kinematics/flight-control coupling methods in virtual flight simulations[J]. Advances in Mechanics, 2014, 44(10):376-417(in Chinese).
[24] HUA R H, ZHAO C X, YE Z Y, et al. Effect of elastic deformation on the trajectory of aerial separation[J]. Aero-space Science and Technology, 2015, 45:128-139.
[25] 索谦, 王刚, 李仑, 等. 基于变步长CFD/RBD方法的旋转弹轨迹仿真[J]. 航空计算技术, 2014, 44(4):86-90. SUO Q, WANG G, LI L, et al. Trajectory simulation of a spinning projectile based on CFD/RBD computation method[J]. Aeronautical Computing Technique, 2014, 44(4):86-90(in Chinese).
[26] ZHANG H X, ZHUANG F G. NND schemes and their application to numerical simulation of two and three dimensional flows[J]. Advances in Applied Mechanics, 1991, 29:193-256.
[27] JAMESON A. Time dependent calculation using multi-grid with application to unsteady flows past airfoils and wings:AIAA-1991-1596[R]. Reston:AIAA, 1991.
[28] 陈坚强, 陈琦, 袁先旭, 等. 舵面操纵动态响应的数值模拟研究[J]. 力学学报, 2013, 45(2):302-306. CHEN J Q, CHEN Q, YUAN X X, et al. Numerical simulation study on dynamics response under rudder control[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2):302-306(in Chinese).
[29] BIRCH T J, PETTERSON K. CFD predictions of square and elliptic cross-section missile configurations at supersonic speeds:AIAA-2004-5453[R]. Reston:AIAA, 2004.
[30] MURMAN S M, AFTOSMIS M J, ROGERS S E. Characterization of space shuttle ascent debris aerodynamics using CFD methods:AIAA-2005-1223[R]. Reston:AIAA, 2005.
/
〈 | 〉 |