材料工程与机械制造

二自由度平板折展柔性铰链的分析及优化

  • 刘凯 ,
  • 曹毅 ,
  • 周睿 ,
  • 葛姝翌 ,
  • 丁锐
展开
  • 1. 江南大学 机械工程学院, 无锡 214122;
    2. 上海交通大学 机械系统与振动国家重点实验室, 上海 200240;
    3. 江南大学 江苏省食品先进制造装备技术重点实验室, 无锡 214122

收稿日期: 2016-04-14

  修回日期: 2016-05-04

  网络出版日期: 2016-05-10

基金资助

国家自然科学基金(50905075);江苏省“六大人才高峰”计划(ZBZZ-012);中央高校基本科研业务费专项资金(JUSRP51316B);机械系统与振动国家重点实验室开放课题(MSV201712);机器人技术与系统国家重点实验室开放基金(SKLRS-2016-KF-06)

Analysis and optimization of two-degree of freedom LEMs flexure hinge

  • LIU Kai ,
  • CAO Yi ,
  • ZHOU Rui ,
  • GE Shuyi ,
  • DING Rui
Expand
  • 1. School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China;
    2. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiaotong University, Shanghai 200240, China;
    3. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China

Received date: 2016-04-14

  Revised date: 2016-05-04

  Online published: 2016-05-10

Supported by

National Natural Science Foundation of China (50905075); Six Talent Peaks Project in Jiangsu Province (ZBZZ-012); Fundamental Research Funds for the Central Universities (JUSRP51316B); Open Project of State Key Laboratory of Mechanical System and Vibration of China (MSV201712); Open Project of the State Key Laboratory of Robotics and System of China (SKLRS-2016-KF-06)

摘要

为提高平板折展机构(LEMs)的灵活性,提出了一种能实现平面内及平面外转动的二自由度柔性铰链。首先,综合椭圆柔性铰链与LET柔性铰链的结构特点,设计了二自由度平板折展柔性铰链;其次,利用弹簧模型推导了该铰链两个方向的转动等效刚度计算模型,并通过设计实例的理论计算与有限元仿真分析对比,验证了两个理论模型的正确性;然后,探讨了各结构参数对铰链两种转动刚度的影响;最后,以提高二自由度平板折展柔性铰链的转动性能为目标,建立了其优化设计模型,并采用自适应粒子群优化算法对该铰链的结构参数进行了优化。优化结果表明:铰链y轴方向转动刚度下降了83.60%,z轴方向转动刚度下降了92.73%,二自由度平板折展柔性铰链两个方向的转动性能都得到了极大的提升,优化结果完全符合预期。

本文引用格式

刘凯 , 曹毅 , 周睿 , 葛姝翌 , 丁锐 . 二自由度平板折展柔性铰链的分析及优化[J]. 航空学报, 2017 , 38(2) : 420317 -420326 . DOI: 10.7527/S1000-6893.2016.0142

Abstract

In order to improve the flexibility of lamina emergent mechanisms (LEMs), a two-degree of freedom LEMs flexure hinge that can realize in-plane and out-of-plane rotation is proposed. The structure of the two-degree of freedom LEMs flexure hinge is designed combining the features of elliptical flexure hinge with LET flexure hinge. The theoretical models of the rotational equivalent stiffness along axes y and z for the two-degree of freedom LEMs flexure hinge are deduced using spring models. The correctness of the theoretical models is verified by comparing the theoretical calculation and the finite element analysis. The impact of structural parameters on two kinds of rotational stiffness is also discussed. An optimization model is then established to increase the rotation property of two-degree of freedom LEMs flexure hinge, and the structure parameters are optimized by adaptive particle swarm optimization. The results of optimization show that the rotation property is improved significantly when the rotational stiffness in the y and the z directions decreases by 83.60% and 92.73% respectively. The optimization is in line with our expectation.

参考文献

[1] HOWELL L L. Compliant mechanisms[M]. New York:John Wiley and Sons, 2001:1-24.
[2] 于靖军, 郝广波, 陈贵敏, 等. 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 51(13):53-68. YU J J, HAO G B, CHEN G M, et al. State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 51(13):53-68(in Chinese).
[3] 刘承平, 赵宏哲, 毕树生, 等. 一种用于机载设备的高精度转动型柔性铰链[J]. 航空学报, 2013, 34(3):694-702. LIU C P, ZHAO H Z, BI S S, et al. A precise rotational flexure pivot for airborne equipment[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):694-702(in Chinese).
[4] 黄杰, 葛文杰, 杨方. 实现机翼前缘形状连续变化柔性机构的拓扑优化[J]. 航空学报, 2007, 28(4):988-992. HUANG J, GE W J, YANG F. Topology optimization of the compliant mechanism for shape change of airfoil leading edge[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4):988-992(in Chinese).
[5] HENEIN S, SPANOUDAKIS P, DROZ S, et al. Flexure pivot for aerospace mechanisms[C]//Proceedings of 10th European Space Mechanisms and Tribology Symposium. San Sebastian:European Space Agency, 2003:1-4.
[6] 谢海斌, 张代兵, 沈林成. 基于柔性长鳍波动推进的仿生水下机器人设计与实现[J]. 机器人, 2006, 28(5):525-529. XIE H B, ZHANG D B, SHEN L C. Design and realization of a bionic underwater vehicle propelled by undulation of a long flexible fin[J]. Robot, 2006, 28(5):525-529(in Chinese).
[7] 万能, 苟圆捷, 莫蓉. 基于智能元件的柔性夹具设计新方法[J]. 计算机集成制造系统, 2012, 18(11):2362-2369. WAN N, GOU Y J, MO R. New method for flexible fixture design based on smart fixture unit[J]. Computer Integrated Manufacturing Systems, 2012, 18(11):2362-2369(in Chinese).
[8] ALBRECHTSEN N B, MAGLEBY S P, HOWELL L L. Identifying potential applications for lamina emergent mechanisms using technology push product development[C]//Proceeding of the ASME IDETC/CIE 2010. New York:ASME, 2010, 2:513-521.
[9] WILDING S E, HOWELL L L, MAGLEBY S P. Spherical lamina emergent mechanisms[J]. Mechanism and Machine Theory, 2011, 49(3):187-197.
[10] JACOBSEN J O, HOWELL L L, MAGLEBY S P, et al. Components for the design of lamina emergent mechanisms[C]//Proceeding of ASME 2007 International Mechanical Engineering Congress and Exposition. New York:ASME, 2007, 10:165-174.
[11] HINKLEY D, SIMBURGER E J. A multifunctional flexure hinge for deploying omnidirectional solar arrays[C]//42nd AIAA/ASME/ASCE/AHS/ASC Structural Dynamics and Materials Conference. Reston:AIAA, 2001:586-593.
[12] WOOD R. Design, fabrication, and analysis of a 3DOF, 3 cm flapping-wing MAV[C]//Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2007:1576-1581.
[13] 新浪网络公司. 美研制微型机器蜜蜂:高度仅2.4毫米[EB/OL]. (2012-02-23)[2016-04-28]. http://tech.sina.com.cn/d/2012-02-23/08276759230.shtml. SINA. The United States developed micro machine bees:Its height is only 2.4 mm[EB/OL]. (2012-02-23)[2016-04-28]. http://tech.sina.com.cn/d/2012-02-23/08276759230.shtml(in Chinese).
[14] MAGLEBY S P, HOWELL L L, WINDER B G. A study of joints suitable for lamina emergent mechanisms[C]//Proceeding of the ASME IDETC/CIE 2008. New York:ASME, 2008:339-349.
[15] JACOBSEN J O, CHEN G, HOWELL L L, et al. Lamina emergent torsional (LET) joint[J]. Mechanism and Machine Theory, 2009, 44(11):2098-2109.
[16] 邱丽芳, 韦志鸿, 俞必强, 等. LET柔性铰链的等效刚度分析及其参数优化[J]. 工程力学, 2014, 31(1):188-193. QIU L F, WEI Z H, YU B Q, et al. Analysis of equivalent stiffness and parameter optimization of let flexure hinge[J]. Engineering Mechanics, 2014, 31(1):188-193(in Chinese).
[17] MAGLEBY S P, FERRELL D B, ISAAC Y F, et al. Development of criteria for lamina emergent mechanism flexures with specific application to metals[J]. Journal of Mechanical Design, 2011, 133(3):586-599.
[18] WILDING S E, HOWELL L L, MAGLEBY S P. Introduction of planar compliant joints designed for combined bending and axial loading conditions in lamina emergent mechanisms[J]. Mechanism and Machine Theory, 2012, 56(1):1-15.
[19] 曹毅, 刘凯, 单春成, 等. 抗拉柔性铰链的理论建模及有限元分析[J]. 光学精密工程, 2016, 24(1):119-125. CAO Y, LIU K, SHAN C C, et al. Theory modeling and finite element analysis of tensile flexure hinge[J]. Optics and Precision Engineering, 2016, 24(1):119-125(in Chinese).
[20] 陈贵敏, 贾建援, 刘小院, 等. 椭圆柔性铰链的计算与分析[J]. 工程力学, 2006, 23(5):152-156. CHEN G M, JIA J Y, LIU X Y, et al. Design calculation and analysis of elliptical flexure hinge[J]. Engineering Mechanics, 2006, 23(5):152-156(in Chinese).
[21] 陈贵敏, 刘小院, 贾建援. 椭圆柔性铰链的柔度计算[J]. 机械工程学报, 2006, 23(S1):111-115. CHEN G M, LIU X Y, JIA J Y. Compliance calculation of elliptical flexure hinge[J]. Journal of Mechanical Engineering, 2006, 23(S1):111-115(in Chinese).
[22] 陈贵敏, 韩琪. 深切口椭圆柔性铰链[J]. 光学精密工程, 2009, 17(3):570-575. CHEN G M, HAN Q. Deep-notch elliptical flexure hinge[J]. Optics and Precision Engineering, 2009, 17(3):570-575(in Chinese).
[23] 卢倩, 黄卫清, 王寅, 等. 深切口椭圆柔性铰链优化设计[J]. 光学精密工程, 2015, 23(1):206-215. LU Q, HUANG W Q, WANG Y, et al. Optimization design of deep-notch elliptical flexure hinges[J]. Optics and Precision Engineering, 2015, 23(1):206-215(in Chinese).
[24] CHEN G, HOWELL L L. Two general solutions of torsional compliance for variable rectangular cross-section hinges in compliant mechanisms[J]. Precision Engineering, 2009, 33(3):268-274.

文章导航

/