分层嵌套重叠网格自适应树结构动态组装方法
A dynamic assembling method based on adaptive tree structure for hierarchical overset grids
Received date: 2016-03-21
Revised date: 2016-04-27
Online published: 2016-05-04
Supported by
National Basic Research Program of China
采用重叠网格可以有效地进行复杂流动的大规模数值模拟,特别是包含运动部件(如旋翼、投弹)的动态模拟。本文将树结构的自适应直角网格用于重叠网格组装过程中的切割和贡献单元的搜索,大大加快重叠网格的组装速度。通过二叉树自适应直角网格对物体外形进行离散,实现切割过程的快速定位;采用八叉树自适应直角网格对流场区域进行离散,高效地搜索贡献单元。使用基于壁面距离准则的重叠区域最小化方法和分层嵌套重叠策略,能提高重叠网格组装的效率和质量。对于具有运动部件的动态重叠网格问题,采用多个二/八叉树减少组装过程中信息更新的冗余计算,从而大幅度减少重叠网格组装的时间消耗。实际算例的重叠网格组装结果说明本文发展的重叠网格组装方法具有很高的计算效率,可以满足运动边界复杂流动问题的动态计算要求。
李晓东 , 屈崑 , 蔡晋生 . 分层嵌套重叠网格自适应树结构动态组装方法[J]. 航空学报, 2017 , 38(3) : 120243 -120243 . DOI: 10.7527/S1000-6893.2016.0135
The overset or chimera grid is an effective method for large-scale numerical simulation of aerodynamic problems with complex geometry, especially those with bodies in relative motion (such as the rotorcraft, store/aircraft separation). The method of adaptive cartesian grids based on the tree structure is applied to perform fast hole cutting and donor searching in the overset grid assembly process. In this technique, the geometry is represented by adaptive cartesian grids of binary trees, and this can achieve quick locating in the hole cutting. Adaptive cartesian grids of octrees are used to decompose the flow field, making the donor searching efficient. By means of a minimal overlapping-domain approach and a hierarchical strategy for overset grids, which both employ the rule of wall distance, the efficiency and quality of overset grid assembly are improved. For dynamic problems of moving bodies, multiple binary trees and octrees are applied to decrease the redundant work of updating data in procedures of overset grid assembly, substantially reducing the time consumption. The test cases demonstrate that the technique in this paper is computationally efficient and can be successfully employed to problems of multiple moving bodies.
[1] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the fifth computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213.
[2] BENEK J A, STEGER J L, DOUGHERTY F C. A flexible grid embedding technique with application to the Euler equations:AIAA-1983-1944[R]. Reston:AIAA, 1983.
[3] NOACK R W, SLOTNICK J P. A summary of the 2004 overset symposium on composite grids and solution technology:AIAA-2005-0921[R]. Reston:AIAA, 2005.
[4] CHAN W M. Overset grid technology development at NASA Ames Research Center[J]. Computers & Fluids, 2009, 38(3):496-503.
[5] CHIU I T, MEAKIN R L. On automating domain connectivity for overset grids:AIAA-1995-0854[R]. Reston:AIAA, 1995.
[6] MEAKIN R L. Object X-rays for cutting holes in composite overset structured grids:AIAA-2001-2537[R]. Reston:AIAA, 2001.
[7] ROGERS S E, SUHS N E, DIETZ W E. PEGASUS 5:An automated preprocessor for overset-grid computational fluid dynamics[J]. AIAA Journal, 2003, 41(6):1037-1045.
[8] WANG Z J, PARTHASARATHY V, HARIHARAN N. A fully automated Chimera methodology for multiple moving body problems:AIAA-1998-0217[R]. Reston:AIAA, 1998.
[9] NOACK R W. SUGGAR:A general capability for moving body overset grid assembly:AIAA-2005-5117[R]. Reston:AIAA, 2005.
[10] CHO K W, KWON J H, LEE S. Development of a fully systemized chimera methodology for steady/unsteady problems[J]. Journal of Aircraft, 1999, 36(6):973-980.
[11] NOACK R W, BOGER D A, KUNZ R F, et al. Suggar++:An improved general overset grid assembly capability:AIAA-2009-3992[R]. Reston:AIAA, 2009.
[12] 袁武, 阎超, 席柯. 洞映射方法的研究和改进[J]. 北京航空航天大学学报, 2012, 38(4):563-568. YUAN W, YAN C, XI K. Investigation and enhancement of hole mapping method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(4):563-568(in Chinese).
[13] 袁武, 阎超, 杨威. 割补法的改进和应用[J]. 空气动力学学报, 2013, 31(6):704-709. YUAN W, YAN C, YANG W. Enhancement and application of cut-paste algorithm[J]. Acta Aerodynamica Sinica, 2013, 31(6):704-709(in Chinese).
[14] 王文, 阎超, 袁武, 等. 新型重叠网格洞面优化方法及其应用[J]. 航空学报, 2016, 27(3):826-835. WANG W, YAN C, YUAN W, et al. A new kind of overlap optimization algorithm and its applica-tions[J]. Acta Aeronautica et Astronautica Sinica, 2016, 27(3):826-835(in Chinese).
[15] 王文, 阎超, 袁武, 等. 鲁棒的结构网格自动化重叠方法[J]. 航空学报, 2016, 37(10):2980-2991. WANG W, YAN C, YUAN W, et al. A robust and automatic structured overlapping grid approach[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):2980-2991(in Chinese).
[16] 淮洋, 郝海兵, 姚冰, 等. 一种改进型洞映射法[J]. 航空计算技术, 2015, 45(2):31-34. HUAI Y, HAO H B, YAO B, et al. An improved method of hole-map[J]. Aeronautical Computing Technique, 2015, 45(2):31-34(in Chinese).
[17] LEE Y, BAEDER J D. Implicit hole cutting-A new approach to overset grid connectivity:AIAA-2003-4128[R]. Reston:AIAA, 2003.
[18] LANDMANN B, MONTAGNAC M. A highly automated parallel Chimera method for overset grids based on the implicit hole cutting technique[J]. International Journal for Numerical Methods in Fluids, 2011, 66(6):778-804.
[19] 刘秋洪, 屈崑, 蔡晋生, 等. 嵌套重叠网格的构造策略及其隐式切割[J]. 中国科学:物理学力学天文学, 2013, 42(2):186-198. LIU Q H, QU K, CAI J S, et al. An automated Chimera method based on a hierarchical overset grid strategy and the implicit hole cutting technique[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2013, 42(2):186-198(in Chinese).
[20] 徐嘉, 刘秋洪, 蔡晋生, 等. 基于隐式嵌套重叠网格技术的阻力预测[J]. 航空学报, 2013, 34(2):208-217. XU J, LIU Q H, CAI J S, et al. Drag prediciton based on overset grids with implict hole cutting technique[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):208-217(in Chinese).
[21] DRUYOR JR C T, JONES W T, KARMAN JR S L. A survey of overset domain assembly methods:AIAA-2015-0910[R]. Reston:AIAA, 2015.
[22] DIETZ W E, JACOCKS J L, FOX J H. Application of domain decomposition to the analysis of complex aerodynamic configurations[C]//3rd International Symposium on Domain Decomposition Methods for Partial Differential Equations. Houston, Texas:SIAM, 1989:428-450.
[23] CAI J, TSAI H M, LIU F. A parallel viscous flow solver on multi-block overset grids[J]. Computers & Fluids, 2006, 35(10):1290-1301.
[24] CHIN V D, PETERS D W, SPAID F W, et al. Flowfield measurements about a multi-element airfoil at high Reynolds numbers:AIAA-1993-3137[R]. Reston:AIAA, 1993.
[25] HEIM E R. CFD wing/pylon/finned store mutual interference wind tunnel experiment:ADB152669[R]. Arnold:Arnold Engineering Development Center, 1991.
/
〈 |
|
〉 |