非定常流动数值模拟研究

粗糙元诱导的高超声速边界层转捩

  • 段志伟 ,
  • 肖志祥
展开
  • 清华大学 航天航空学院, 北京 100084
段志伟,男,博士,助理研究员。主要研究方向:空气动力学、高精度湍流预测和边界层转捩。Tel.:010-62795411。E-mail:dzw15@tsinghua.edu.cn;肖志祥,男,博士,副研究员,博士生导师。主要研究方向:RANS-LES混合方法、高精度湍流预测、流动转捩和计算气动声学。Tel.:010-62797060。E-mail:xiaotigerzhx@tsinghua.edu.cn

收稿日期: 2016-01-18

  修回日期: 2016-04-26

  网络出版日期: 2016-04-29

基金资助

国家自然科学基金(11372159);中国博士后科学基金(2015M571029);国家重点研发计划项目(2016YFA0401200)

Roughness element induced hypersonic boundary layer transition

  • DUAN Zhiwei ,
  • XIAO Zhixiang
Expand
  • School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

Received date: 2016-01-18

  Revised date: 2016-04-26

  Online published: 2016-04-29

Supported by

National Natural Science Foundation of China (11372159);China Postdoctoral Science Foundation (2015M571029);National Key Research and Development Project (2016YFA0401200)

摘要

基于有限体积方法,直接数值模拟了高超声速边界层内不同形状粗糙元导致的强制转捩现象;为了能够深入探究强制转捩机理,解析小尺度运动,同时又能够较好地捕捉激波,采用高阶色散最小耗散可调(MDCD)格式对Navier-Stokes方程组对流项进行重构。计算结果表明,数值结果与对应的实验值吻合较好;该方法能解析小尺度的流动结构以及规则结构的破碎与失稳过程,可揭示粗糙元引起的强制转捩机理,即此类强制转捩主要由粗糙元顶部的三维剪切层失稳导致。对多种粗糙元的转捩效果进行了定量研究,影响因素包括粗糙元形状、几何参数等。

本文引用格式

段志伟 , 肖志祥 . 粗糙元诱导的高超声速边界层转捩[J]. 航空学报, 2016 , 37(8) : 2454 -2463 . DOI: 10.7527/S1000-6893.2016.0130

Abstract

Hypersonic boundary layer transition from laminar to turbulent induced by different isolated roughness elements is investigated using direct numerical simulation based on finite volume formulation. To explore the transition mechanism through resolving the small flow structure, and capture shock wave in hypersonic flow, the high order minimized dispersion and controllable dissipation (MDCD) scheme is used to reconstruct the convection terms of Navier-Stokes equations. The numerical results agree well with experimental data. The numerical method adopted in this article is able to resolve small flow structures and their break-up and instability procedure. And it shows that the transition is dominated by the instability of the three-dimensional shear layer on top of the roughness elements. The effect of roughness element shape and geometrical parameters on transition mechanisms, and the transition results of multiple roughness elements are quantitatively studied.

参考文献

[1] WHITEHEAD A, JR. NASP aerodynamics:AIAA-1989-5013[R]. Reston:AIAA, 1989.
[2] VAN DRIEST E R, BLUMER C B. Boundary-layer at supersonic speeds-three dimensional roughness effects (spheres):SID 61-275[R]. Wichita:North American Aviation, Inc., 1961.
[3] 赵慧勇, 周瑜, 倪鸿礼, 等. 高超声速进气道边界层强制转捩试验[J]. 实验流体力学,2012, 26(1):1-6. ZHAO H Y, ZHOU Y, NI H L, et al. Test of forced boundary-layer transition on hypersonic inlet[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1):1-6(in Chinese).
[4] SCHNEIDER S P. Effects of roughness on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2008, 45(2):193-209.
[5] CASPER K M, WHEATON B M, JOHNSON H B, et al. Effect of freestream noise on roughness-induced transition at Mach 6:AIAA-2008-4291[R]. Reston:AIAA, 2008.
[6] VAN DRIEST E R, MCCAULEY W. The effect of controlled three-dimensional roughness on boundary layer transition at supersonic speeds[J]. Journal of Aerospace Science, 1960, 27(4):261-271
[7] HICKS R M, HARPER W R, JR. A comparison of spherical and triangular boundary-layer tips on a flat plate at supersonic speeds:NASA, TM-X-2146[R]. Washington, D.C.:NASA, 1970.
[8] BERRY S A, AUSLENDER A H. Hypersonic boundary-layer trip development for hyper-X[J]. Journal of Spacecraft and Rockets, 2001, 38(6):853-864.
[9] WHITEHEAD A H, JR. Flowfield and drag characteristics of several boundary-layer tripping elements in hypersonic flow:NASATND-5454[R]. Washington, D.C.:NASA, 1969.
[10] TIRTEY S C, CHAZOT O, WALPOT L. Characterization of hypersonic roughness-induced boundary-layer transition[J]. Experiments in Fluids, 2011, 50(2):407-418.
[11] DANEHY P M, IVEY C B, INMAN J A, et al. High-speed PLIF imaging of hypersonic transition over discrete cylindrical roughness:AIAA-2010-0703[R]. Reston:AIAA, 2010.
[12] DANEHY P M, BATHEL B F, IVEY C B, et al. NO PLIF study of hypersonic transition over a discrete hemispherical roughness element:AIAA-2009-0394[R]. Reston:AIAA, 2009.
[13] 周玲, 阎超, 孔维萱. 高超声速飞行器前体边界层强制转捩数值模拟[J]. 航空学报, 2014, 35(6):1487-1495. ZHOU L, YAN C, KONG W X. Numerical simulation of forced boundary layer transition on hypersonic vehicle forebody[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1487-1495(in Chinese).
[14] BERNARDINI M, PIROZZOLI S, ORLANDI P. Compressibility effects on roughness-induced boundary layer transition[J]. International Journal of Heat and Fluids Flow, 2012, 35(35):45-51.
[15] BARTKOWICZ M D, SUBBAREDDY P K, CANDLER G V. Numerical simulations of roughness induced instability in the purdue mach 6 wind tunnel:AIAA-2010-4723[R]. Reston:AIAA, 2010.
[16] IYER P S, MAHESH K. High-speed boundary layer transition induced by a discrete roughness element[J]. Journal of Fluid Mechanics, 2013, 729:524-562.
[17] MUPPIDI S, MAHESH K. Direct numerical simulations of roughness-induced transition in supersonic boundary layers[J]. Journal of Fluid Mechanics, 2012, 693:28-56.
[18] TULLIO N D, PAREDES P, SANDHAM N D, et al. Laminar-turbulent transition induced by a discrete roughness element in a supersonic boundary layer[J]. Journal of Fluid Mechanics, 2013, 735:613-646.
[19] SUN Z S, REN Y X, LARRICQ C, et al. A class of finite difference schemes with low dispersion and controllable dissipation for DNS of compressible turbulence[J]. Journal of Computational Physics, 2011, 230(12):4616-4635.
[20] WANG Q J, REN Y X, SUN Z S. High resolution finite volume scheme based on minimized dispersion and controllable dissipation reconstruction[J]. Science China Physics, Mechanics & Astronomy, 2013, 56(2):423-431.
[21] DUAN Z W, XIAO Z X, FU S. Direct numerical simulation of hypersonic transition induced by an isolated cylindrical roughness element[J]. Science China Physics, Mechanics & Astronomy, 2014, 57(12):2330-2345.
[22] DUAN Z W, XIAO Z X, FU S. Direct numerical simulation of hypersonic transition induced by a cylindrical roughness element:AIAA-2013-3112[R]. Reston:AIAA, 2013.
[23] WHEATON B M, SCHNEIDER S P. Roughness-induced instability in a hypersonic laminar boundary layer[J].AIAA Journal, 2012, 50(6):1245-1256.
[24] WHEATON B M, BARTKOWICZ M D, SUBBAREDDY P K, et al. Roughness-induced instabilities at Mach 6:A combined numerical and experimental study:AIAA-2011-3248[R]. Reston:AIAA, 2011.

文章导航

/