战斗机垂尾脉动压力数值模拟
收稿日期: 2016-01-18
修回日期: 2016-04-11
网络出版日期: 2016-04-26
基金资助
国家重点研发计划(2016YFB0200700)
Numerical simulation of fluctuating pressure of fighter vertical tail
Received date: 2016-01-18
Revised date: 2016-04-11
Online published: 2016-04-26
Supported by
National Key Research and Development Plan (2016YFB0200700)
在亚跨超计算流体力学(CFD)软件平台(TRIP)上开发了基于RANS/LES混合思路的IDDES流动模拟技术,并通过NACA0021翼型60°大迎角分离流动与串列圆柱绕流模拟对RANS/LES混合方法的精确度进行了验证,针对某战斗机外形的垂尾脉动压力开展了数值模拟研究。战斗机来流马赫数为0.1,基于全机长度的雷诺数为2×106,模型迎角为20°、30°和40°。分别通过脉动压力系数、脉动压力功率谱密度、空间流动结构以及侧向力响应曲线等对战斗机的垂尾脉动压力进行了分析。脉动压力模拟结果表明:当垂尾完全沉浸在边条翼脱体涡破碎后的宽频湍流脉动气流中时,垂尾翼梢位置的脉动压力会发生明显的增大。
关键词: 战斗机; 垂尾; 脉动压力; RANS/LES; 计算流体力学(CFD)
孟德虹 , 孙岩 , 王运涛 , 李伟 . 战斗机垂尾脉动压力数值模拟[J]. 航空学报, 2016 , 37(8) : 2472 -2480 . DOI: 10.7527/S1000-6893.2016.0121
IDDES flow simulation technique based on hybrid RANS/LES method is realized on TRIP, a trisonic fluid simulation software platform. Separating flows around airfoil NACA0021 with 60° angle of attack and tandem cylinders are simulated to validate the precision of hybrid RANS/LES method. Then, fluctuating pressure of a fighter vertical tail is calculated with the presented RANS/LES method. Flow Mach number is 0.1, Reynolds number based on length of fighter is 2 million, and angles of attack are 20°, 30° and 40°. Fluctuating pressure of fighter vertical tail is analyzed through fluctuating pressure coefficients, power spectrum density of fluctuating pressure, space flow structure and side force response. Numerical results show that fluctuating pressure on tip of vertical tail increases obviously when vertical tail is immersed in broadband turbulence fluctuating flow behind the breakup of separating vortex from strake wing.
[1] 贾有, 杨智春. 一种飞机垂尾抖振载荷识别的新方法[J]. 航空学报, 2013, 34(10):2333-2340. JIA Y, YANG Z C. A new approach to identify buffet loads for aircraft vertical tail[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10):2333-2340(in Chinese).
[2] 韩冰, 徐敏, 蔡天星, 等. 涡破裂诱导的垂尾抖振数值模拟[J]. 航空学报, 2012, 33(5):788-795. HAN B, XU M, CAI T X, et al. Numerical simulation of vertical tail buffeting induced by vortex breakdown[J]. Acta Aeronautica et Astronautica Sinica, 2012, 32(5):788-795(in Chinese).
[3] HUANG J T, GAO Z H. Buffeting numerical simulation coupled with aerodynamics and structure based on MDDES[J]. Science China Technological Sciences, 2013, 56:1550-1560.
[4] AHMED E, OSAMA A K, OKTAY B. F/A-18 twin-tail buffet modeling using non-linear eddy viscosity models:AIAA-2014-2447[R]. Reston:AIAA, 2014.
[5] 李劲杰, 杨青, 杨永年, 等. 边条翼布局双垂尾抖振表面压力脉动风洞实验研究[J]. 实验流体力学, 2006, 20(3):29-32. LI J J, YANG Q, YANG Y N, et al. Wind-tunnel unsteady pressure measurements of twin-vertical tail during buffet of strake-wing configuration[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(3):29-32(in Chinese).
[6] SPALART P R, JOU W H, STRETLETS M, et al. Comments on the feasibility of LES for wings and on the hybrid RANS/LES approach[C]//Proceedings of the First AFOSR International Conference on DNS/LES. Colombus:Greyden Press, 1998:137-147.
[7] DECK S. Zonal-detached-eddy simulation of the flow around a high-lift configuration[J]. AIAA Journal, 2005, 43(11):2372-2384.
[8] SPALART P R, DECK S, SHUR M, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theory and Computation Fluid Dynamics, 2006, 20(3):181-195.
[9] SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41(1):181-202.
[10] SHUR MIKHAIL L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649.
[11] MIKHAIL S G, ANDREY V G, JOCHEN S, et al. Development of DDES and IDDES formulations for the k-ω shear stress tranport model[J]. Flow Turbulence Combust, 2012, 88(3):431-449.
[12] DECK S. Numerical simulation of transonic buffet over a supercritical airfoil[J]. AIAA Journal, 2005, 43(7):1556-1566.
[13] 吴晶峰, 宁方飞. 后台阶流动的Hybrid RANS/LES模拟[J]. 北京航空航天大学学报, 2011, 37(6):701-704. WU J F, NING F F. Hybrid RANS-LES method applied to backward facing step flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(6):701-704(in Chinese).
[14] XIAO Z X, LIU J, LUO K Y, et al. Numerical investigations of massively separated flows past rudimentary landing gear using SST-DDES:AIAA-2012-0385[R]. Reston:AIAA, 2012.
[15] HUANG J B, XIAO Z X, LIU J, et al. Simulation of shock wave buffet and its suppression on an OAT15A supercritical airfoil by IDDES[J]. Science China:Physics, Mechanics and Astronomy, 2012, 55(2):260-271.
[16] 王运涛, 王光学, 张玉伦. TRIP2.0软件的确认:DPWⅡ复杂组合体的数值模拟[J]. 航空学报, 2008, 29(1):34-40. WANG Y T, WANG G X, ZHANG Y L. Validation of TRIP2.0:Numerical simulation of DPWⅡ complex configuration[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1):34-40(in Chinese).
[17] 王运涛, 王光学, 张玉伦. 采用TRIP2.0软件计算DLR-F6构型的阻力[J]. 空气动力学学报, 2009, 27(1):108-113. WANG Y T, WANG G X, ZHANG Y L. Drag prediction of DLR-F6 configuration with TRIP2.0 software[J]. Acta Aerodynamica Sinica, 2009, 27(1):108-113(in Chinese).
[18] 王运涛, 王光学, 张玉伦. DPWⅢ机翼和翼身组合体构型数值模拟[J]. 空气动力学学报, 2011, 29(3):264-269. WANG Y T, WANG G X, ZHANG Y L. Numerical simulation of DPW Ⅲ wing and wing-body configurations[J]. Acta Aerodynamica Sinica, 2011, 29(3):264-269(in Chinese).
[19] 王运涛, 张书俊, 孟德虹. DPW4翼/身/平尾组合体的数值模拟[J]. 空气动力学学报, 2013, 31(6):739-744. WANG Y T, ZHANG S J, MENG D H. Numerical simulation and study for DPW4 wing/body/tail[J]. Acta Aerodynamica Sinica, 2013, 31(6):739-744(in Chinese).
[20] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston:AIAA, 1992.
[21] MENTER F R. Two equation eddy viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
/
〈 | 〉 |