基于数值虚拟飞行技术的飞行器动态特性分析
收稿日期: 2016-01-11
修回日期: 2016-04-06
网络出版日期: 2016-04-20
Analysis of flying vehicle's dynamic characteristics based on numerical virtual flight technology
Received date: 2016-01-11
Revised date: 2016-04-06
Online published: 2016-04-20
基于结合结构重叠网格、闭环PID控制器、舵偏控制律、刚体六自由度运动和非定常Navier-Stokes方程求解等模块的数值虚拟飞行技术,对“起源号”返回舱、基本带翼导弹外形的多自由度非定常运动、受控特性及控制参数的整定开展了模拟。分析了不同自由度(DOF)下飞行器的运动特性,飞行器受扰动后的稳定性及控制参数的整定。计算结果表明:利用数值虚拟飞行技术可有效地开展复杂流动下飞行物体非线性运动问题的研究,对研究飞行器在非线性流动下的动态特性、受控特性、流动机理研究以及控制律的设计检验具有较高的工程价值和应用前景。
黄宇 , 阎超 , 席柯 , 王文 . 基于数值虚拟飞行技术的飞行器动态特性分析[J]. 航空学报, 2016 , 37(8) : 2525 -2538 . DOI: 10.7527/S1000-6893.2016.0120
With the numerical virtual flight technology based on structured overlapping grid, closed PID controller, rudder control, rigid body motion and unsteady N-S equation solver, the unsteady motion characteristic, dynamic stability and adjustment of control parameter of Genesis capsule and basic finner projectile have been simulated. The motion characteristic with different degree of freedom (DOF) motion, the motion stability and the adjustment of control parameter with disturbance of those flying vehicles have been analyzed. The calculation results show that the study of flying vehicle's nonlinear motion under the condition of complex fluid flows can be effectively carried out by numerical virtual flight technology, which has practical value and application prospect in the area of simulation and prediction of flying vehicle's motion and controlling characteristic, fluid mechanics study and design of control rule under the condition of unsteady and nonlinear aerodynamics.
[1] 吕光男. 风洞虚拟飞行实验中的飞行力学与控制问题研究[D]. 南京:南京航空航天大学, 2009:1-13 LYU G N. The problem of flight mechanics and control in wind tunnel based virtual flight testing[D]. Nanjing:Nanjing University of Aeronautics and Astonautics, 2009:1-13(in Chinese).
[2] 李周复. 风洞特种实验技术[M]. 北京:航空工业出版社, 2010:210-250. LI Z F. Special wind tunnel testing technology[M]. Beijing:Aviation Industry Press, 2010:210-250(in Chinese).
[3] 刘伟, 杨小亮, 赵云飞. 高超声速飞行器加速度导数数值模拟[J]. 空气动力学学报, 2010, 28(4):426-429. LIU W, YANG X L, ZHAO Y F. Numerical simulation of acceleration derivative of hypersonic aircraft[J]. Acta Aerodynamica Sinica, 2010, 28(4):426-429(in Chinese).
[4] RATLIFF C L, MARQUART E J. An assessment of a potential test technique:virtual flight testing (VFT):AIAA-1995-3415[R]. Reston:AIAA, 1995.
[5] GEBERT G, KELLY J, LOPEZ J. Wind tunnel based virtual flight testing:AIAA-2000-0829[R], Reston:AIAA, 2000.
[6] MAGILL J C, CATALDI P, MORENCY J R, et al. Demonstration of a wire suspension for wind-tunnel virtual flight testing[J]. Journal of Spacecraft and Rockets, 2009, 46(3):624-633.
[7] 张来平, 马戎, 常兴华, 等. 虚拟飞行中气动运动和控制耦合的数值模拟技术[J]. 力学进展, 2014, 44:201410. ZHANG L P, MA R, CHANG X H, et al. Review of aerodynamics/kinematics/flight-control coupling methods in virtual flight simulations[J]. Advances in Mechanics, 2014, 44:201410.
[8] 阎超. 计算流体力学方法及应用[M]. 北京:北京航空航天大学出版社, 2006:18-24. YAN C. Computational fluid dynamics methods and applications. Beijing[M]. Beijing:Beihang University Press 2006:18-24(in Chinese).
[9] SALAS M D. Digital flight:The last CFD aeronautical grand challenge[J]. Journal of Scientific Computing, 2006, 28(2-3):479-505.
[10] ROGERS S E,ROTH K,NASH S M,et al.Advances in overset CFD processes applied to subsonic high-lift aircraft:AIAA-2000-4216[R]. Reston:AIAA, 2000.
[11] GOETZ H K, JAMES E K, HENRY C L, et al. Validation of overflow for computing plume effects during the ARES I stage separation process:AIAA-2011-0170[R]. Reston:AIAA, 2011
[12] 范晶晶, 阎超, 张辉. 重叠网格洞面优化技术的改进与应用[J]. 航空学报, 2010, 31(6):1127-1133. FAN J J, YAN C, ZHANG H. Improvement of hole-surface optimization technique in overset grids and its application[J]. Acta Aeronauticaet Astronautica sinica, 2010, 31(6):1127-1133(in Chinese).
[13] 袁武. 新型重叠网格方法研究及在复杂多体气动问题中的应用[D]. 北京:北京航空航天大学, 2012:24-35. YUAN W. Investigations on novel chimera grid methods and its applications to complex multibody aerodynamic problems[D]. Beijing:Beihang University, 2012:24-35(in Chinese).
[14] 肖业伦, 航空航天器运动的建模-飞行动力学的理论基础[M]. 北京:北京航空航天大学出版社, 2003:64-78. XIAO Y L. Modeling of the motion of space vehicle-the basic of flight mechnics[M]. Beijing:Beihang University Press 2003:64-78(in Chinese).
[15] 吴森堂, 费玉华. 飞行控制系统[M]. 北京:北京航空航天大学出版社, 2009:85-93. WU S T, FEI Y H, Flight control system[M]. Beijing:Beihang University Press, 2009:85-93(in Chinese).
[16] MEI X R, ZHUANG X Y. Principle of auto control[M]. Beijing:Science Press, 2009:54-61.
[17] 栗长江. 高超声速飞行器多自由度动态特性研究[D]. 长沙:国防科学技术大学, 2010:51-54. LI C J. Study of mutidimensional motion of hypersonic flight vehicle[D]. Changsha:National University of Science and Technology, 2010:51-54(in Chinese).
[18] EAST R A, HUTT G R. Comparison of predictions and experimental data for hypersonic pitching motion stability[J]. Journal of Spacecraft, 1988, 25(3):225-233
[19] CHEATWOOD F, WINCHENBACH G, HATHAWAY W, et al. Dynamic stability testing of the genesis sample return capsule:AIAA-2000-1009[R]. Reston:AIAA, 2000.
[20] 袁先旭. 非定常流动数值模拟及飞行器动态特性分析研究[D]. 绵阳:中国空气动力研究与发展中心研究生部, 2002:101-117. YUAN X X. Numerical simulation for unsteady flowsand research on dynamic characteristicsof vehicle[D]. Mianyang:China Aerodynamics Research and Development Center. 2002:101-117(in Chinese).
[21] 席柯. 虚拟飞行数值模拟方法及飞行器动态特性研究[D]. 北京:北京航空航天大学, 2015. XI K. Virtual flight numerical simulation method and research on dynamic characteristics of vehicle[D]. Beijing, Beihang University, 2015(in Chinese).
[22] DUPUIS A D, HATHAWAY W. Aeroballistic range tests of the basic finner reference projectile at supersonic velocities:DREV-TM-9703[R]. Valcartier:Defense Research Establishment, 1997.
[23] BHAGWANDIN V A, SAHU J. Numerical prediction of pitch damping stability derivatives for finned projectiles:AIAA-2011-3028[R]. Reston:AIAA, 2011.
/
〈 | 〉 |