椭圆窝自动化加工技术
收稿日期: 2016-01-13
修回日期: 2016-01-31
网络出版日期: 2016-04-12
基金资助
国家自然科学基金(51575479)
Automatic drilling technology of oval hole
Received date: 2016-01-13
Revised date: 2016-01-31
Online published: 2016-04-12
Supported by
National Natural Science Foundation of China (51575479)
为解决椭圆窝自动化加工的工艺难题,提高整体式机翼装配的可靠性,在深入分析椭圆窝形状特点和加工原理的基础上,推导出了椭圆窝摆动中心公式,确定了锪窝刀具与摆动中心的相对位置关系。根据椭圆窝成形原理,提出了椭圆窝执行器各部件相对角度偏差要求并进行了标定。利用标定过的椭圆窝执行器对椭圆窝窝形参数的理论计算结果进行试验验证和调整,得出了窝形偏差的基本形式和调整方法。使用调整后的参数在铝合金材料上加工NAS6型椭圆窝,制出的椭圆窝长短径长度误差在0.05 mm以内,椭圆螺母与工件表面的高度偏差在0.02 mm以内,窝形满足机翼装配要求,实现了椭圆窝的自动化加工。
董辉跃 , 唐小波 , 何凤涛 , 刘顺涛 . 椭圆窝自动化加工技术[J]. 航空学报, 2016 , 37(11) : 3554 -3562 . DOI: 10.7527/S1000-6893.2016.0081
In order to solve the automatic drilling technique problem for the oval hole and enhance the reliability of the integrated wing assembly, on the basis of deeply analyzing the shape feature and processing principle of oval hole, the formula of swing center is deduced to determine the relative position between the countersink and swing center. According to the forming principle of oval hole, some requirements about the relative angular deviation of the end-effector components are put forward and the calibration task is conducted. The theoretical computing results of the shape parameters of oval hole are verified and adjusted by experiments using the calibrated end-effector. The basic forms of the shape deviation and the related adjusting methods are summarized. The adjusted parameters are used to drill NAS6 oval hole on aluminum. The results had the precision of 0.05 mm on the long and short diameters, 0.02 mm on the height deviation between the nut and the work-piece which satisfied the aircraft wing assembly requirements. The automatic drilling of oval hole is realized.
Key words: oval hole; swing center; end-effector; precision calibration; shape adjustment
[1] 许国康. 大型飞机自动化装配技术[J]. 航空学报, 2008, 29(3):734-740. XU G K. Automatic assembly technology for large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):734-740(in Chinese).
[2] 袁红璇. 飞机结构件连接孔制造技术[J]. 航空制造技术, 2007(1):96-99. YUAN H X. Manufacturing technology of connecting hole in aircraft structure[J]. Aeronautical Manufacturing Technology, 2007(1):96-99(in Chinese).
[3] 卜泳, 许国康, 肖庆东. 飞机结构件的自动化精密制孔技术[J]. 航空制造技术, 2009(24):61-64. BU Y, XU G K, XIAO Q D. Automatic precision drilling technology of aircraft structural part[J]. Aeronautical Manufacturing Technology, 2009(24):61-64(in Chinese).
[4] 邹方, 薛汉杰, 周万勇, 等. 飞机数字化柔性装配关键技术及其发展[J]. 航空制造技术, 2006(9):30-35. ZOU F, XUE H J, ZHOU W Y, et al. Key technologies and development of aircraft digital flexible assembly[J]. Aeronautical Manufacturing Technology, 2006(9):30-35(in Chinese).
[5] 何胜强. 飞机数字化装配技术体系[J]. 航空制造技术, 2010(23):32-37. HE S Q. Digital assembly technology system of aircraft[J]. Aeronautical Manufacturing Technology, 2010(23):32-37(in Chinese).
[6] 毕树生, 宗光华, 梁杰. 机器人技术与航空制造业[J]. 机器人技术与应用, 2009(3):25-31. BI S S, ZONG G H, LIANG J. Robot technology and aerospace manufacturing[J]. Robot Technique and Application, 2009(3):25-31(in Chinese).
[7] 毕树生, 梁杰, 战强, 等. 机器人技术在航空工业中的应用[J]. 航空制造技术, 2009(4):34-39. BI S S, LIANG J, ZHAN Q, et al. Applications of robotics technology in aviation industry[J]. Aeronautical Manufacturing Technology, 2009(4):34-39(in Chinese).
[8] DEVLIEG R, SITTON K, FEIKERT E, et al. ONCE(one sided cell end effector) robotic drilling system[C]//2002 SAE Automated Fastening Conference and Exhibition, Chester, Engla, 2002:012626.
[9] WHINNEM E. Development and deployment of orbital drilling at Boeing[C]//2006 SAE Automated Fastening Conference and Exhibition, Chester, Engla, 2006:013152.
[10] ROOKS B. Automatic wing box assembly developments[J]. Industrial Robot, 2001, 28(4):297-302.
[11] LIANG J, BI S S. Design and experimental study of an end effector for robot drilling[J]. The International Journal of Advanced Manufacturing Technology, 2010, 50(1-4):399-407.
[12] 董辉跃, 曹国顺, 曲巍崴, 等. 工业机器人自动钻孔及锪窝一体化加工[J]. 浙江大学学报(工学版), 2013, 47(2):201-208. DONG H Y, CAO G S, QU W W, et al. Processing research of industry robots drilling and countersinking automaticly[J]. Journal of Zhejiang University(Engineering Science), 2013, 47(2):201-208(in Chinese).
[13] 毕运波, 李永超, 顾金伟, 等. 机器人自动化制孔系统[J]. 浙江大学学报(工学版), 2014, 48(8):1427-1433. BI Y B, LI Y C, GU J W, et al. Robotic automatic drilling system[J]. Journal of Zhejiang University(Engineering Science), 2014, 48(8):1427-1433(in Chinese).
[14] TIAN W, ZHOU W X, ZHOU W, et al. Auto-normalization algorithm for robotic precision drilling system in aircraft component assembly[J]. Chinese Journal of Aeronautics, 2013, 26(2):495-500.
[15] 杨宝旒, 俞慈君, 金涨军, 等. 激光跟踪仪转站热变形误差建模与补偿方法[J]. 航空学报, 2015, 36(9):3155-3164. YANG B L, YU C J, JIN Z J, et al. Thermal deformation error modeling and compensation approach for laser tracker orientation[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):3155-3164(in Chinese).
[16] 金涨军, 李江雄, 俞慈君, 等. 大尺寸空间测量中转站误差分析与估计[J]. 浙江大学学报(工学版), 2015, 49(4):655-661. JIN Z J, LI J X, YU C J, et al. Registration error analysis and evaluation in large-volume metrology system[J]. Journal of Zhejiang University(Engineering Science), 2015, 49(4):655-661(in Chinese).
[17] 徐丽娟. 投影角与两直线空间夹角关系的判定定理[J]. 佳木斯工学院学报, 1998(2):235-237. XU L J. Judgement theorem of relation of projective angle and two line's space angle[J]. Journal of Jiamusi Institute of Technology, 1998(2):235-237(in Chinese).
[18] 马超虹. 压脚对机器人制孔影响的试验研究与分析[D]. 杭州:浙江大学, 2014. MA C H. Experiment study and analyze effect of pressure-foot on robot drilling[D]. Hangzhou:Zhejiang University, 2014.
[19] 曲巍崴, 侯鹏辉, 杨根军, 等. 机器人加工系统刚度性能优化研究[J]. 航空学报, 2013, 34(12):2823-2832. QU W W, HOU P H, YANG G J, et al. Research on the stiffness performance for robot machining systems[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2823-2832(in Chinese).
[20] 方宗德, 曹雪梅, 张金良. 航空弧齿锥齿轮齿面坐标测量的数据处理[J]. 航空学报, 2007, 28(2):456-459. FANG Z D, CAO X M, ZHANG J L. Measuring data processing of aviation spiral bevel gears by using coordinate measurement[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2):456-459(in Chinese).
/
〈 | 〉 |