基于代理模型的航空燃油泵空化性能分析
收稿日期: 2015-10-12
修回日期: 2015-12-14
网络出版日期: 2016-04-11
基金资助
国家自然科学基金(51479002);航空科学基金(2013ZC09001)
Analysis of cavitation performance of an aviation fuel pump based on surrogate model
Received date: 2015-10-12
Revised date: 2015-12-14
Online published: 2016-04-11
Supported by
National Natural Science Foundation of China (51479002); Aeronautical Science Foundation of China (2013ZC09001)
基于代理模型的整体敏感度分析方法,对影响燃油泵空化性能的结构参数(即诱导轮出口安放角和叶轮进口安放角)进行了分析,得到影响泵空化性能的主要因素,并对燃油泵的结构参数进行了优化。研究中,采用基于旋转修正的k-ε湍流模型及Zwart空化模型对优化前后的燃油泵空化流场进行了计算。结果表明:在一定变化范围内,叶片安放角对燃油泵的外特性影响较小,对燃油泵空化特性影响较大;其中,叶轮进口安放角对燃油泵空化性能有较大影响,随叶轮进口安放角的增大,燃油泵空化性能呈先下降后上升的变化趋势;优化后诱导轮出口安放角和叶轮进口安放角分别增大了4.4°和3.2°,满足Pareto最优解,燃油泵的空化性能较优化前提高了18%左右。
熊英华 , 刘影 , 赵兴安 , 孙华伟 , 王国玉 , 高德明 . 基于代理模型的航空燃油泵空化性能分析[J]. 航空学报, 2016 , 37(10) : 2952 -2960 . DOI: 10.7527/S1000-6893.2016.0102
In order to investigate the influence of the structure parameters (which are blade angle of inducer at exit and blade angle of impeller at inlet) of fuel pump on the cavitation performance of an aviation fuel pump, the global sensitivity analysis method that based on the surrogate method was applied, and also, the structure parameters of fuel pump had been optimized. In the numerical simulation, the local swirling correction turbulence model deriving from the standard k-ε two-equation model and Zwart cavitation model were applied. The results show that in a certain range of variation, the blade angle has a greater influence on the cavitation performance, instead of the external characteristics of fuel pump. Compared to the outlet angle of inducer, the inlet angle of impeller affects the cavitation performance more significantly. With the increase of the outlet angle of inducer, the cavitation performance firstly decreases and then increases. Based on the Pareto optimal solutions, the optimized outlet angle of inducer and inlet angle of impeller increase by 4.4°and 3.2°respectively, with the cavitation performance increasing by 18%.
[1] 樊思齐, 李华聪. 航空发动机控制[M]. 西安:西北工业大学出版社, 2008. FAN S Q, LI H C. Aeroengine control[M]. Xi'an:Northwestern Polytechnical University Press, 2008(in Chinese).
[2] 薛梅新, 吴迪, 朴英. 加力燃油泵压出室非设计工况内流特征数值模拟[J]. 航空动力学报, 2012, 27(2):419-424. XUE X M, WU D, PIAO Y. Numerical simulation on internal flow characteristics in the discharge chamber of an afterburning fuel pump under off-design conditions[J]. Journal of Aerospace Power, 2012, 27(2):419-424(in Chinese).
[3] 殷吉超, 朴英, 彭晓峰. 高速燃油离心泵内流场分析和气蚀过程仿真[J]. 计算机仿真, 2008, 25(6):70-74. YIN J C, PIAO Y, PENG X F. Numerical simulation of flow field and cavitations in high-speed kerosene centrifugal pump[J]. Computer Simulation, 2008, 25(6):70-74(in Chinese).
[4] 王凯. 离心泵多工况水力设计和优化及其应用[D]. 镇江:江苏大学, 2011. WANG K. Multi-conditions hydraulic design and optimization for centrifugal pumps and its application[D]. Zhenjiang:Jiangsu University, 2011(in Chinese).
[5] 何希杰. 离心泵叶轮入口参数最优化设计的研究[J]. 排灌机械工程学报, 1987, 5(4):18-25. HE X J. Researching on optimization method for impeller inlet parameters of centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 1987, 5(4):18-25(in Chinese).
[6] 葛宰林, 吕斌, 于馨. 基于速度系数法的离心泵叶轮优化设计[J]. 大连铁道学院学报, 2006, 27(3):37-40. GE Z L, LV B, YU X. Optimal design of centrifugal pump impeller[J]. Journal of Dalian Railway Institute, 2006, 27(3):37-40(in Chinese).
[7] 高江永, 郭振苗. 离心泵叶轮与蜗壳设计几何参数的优化研究[J]. 水泵技术, 2007(4):6-9. GAO J Y, GUO Z M. Study on optimization of centrifugal pump impeller's and volute's designed parameters[J]. Pump Technology, 2007(4):6-9(in Chinese).
[8] SUANNE T, RUDOLF S. Optimization of hydraulic machinery bladings by multilevel CFD techniques[J]. International Journal of Rotating Machinery, 2005, 2(2):161-167.
[9] 刘厚林, 王凯, 袁寿其, 等. 一种基于CFD的离心泵多工况水力优化方法:CN101956711A[P]. 2011-01-26. LIU H L, WANG K, YUAN S Q, et al. A multi-conditions hydraulic optimization method for centrifugal pump based on CFD:CN101956711A[P]. 2011-01-26(in Chinese).
[10] GOEL T, DORNEY D J, HAFTKA R T, et al. Improving the hydrodynamic performance of diffuser vanes via shape optimization[J]. Computer & Fluids, 2008, 37(6):705-723.
[11] 杨卓懿, 庞永杰, 王建,等. 响应面模型在艇型多目标优化中的应用[J]. 哈尔滨工程大学学报, 2011, 32(4):407-410. YANG Z Y, PANG Y J, WANG J, et al. Application of a response surface model in multi-objective optimization for submersible shapes[J]. Journal of Harbin Engineering University, 2011, 32(4):407-410(in Chinese).
[12] 吴钦, 王国玉. 低温介质质量传输空化模型的代理分析及优化[J]. 应用力学学报, 2013,30(5):700-706. WU Q, WANG G Y. Surrogate-based analysis and optimization of the transport-based cryogenic cavitation model[J]. Chinese Journal of Applied Mechanics, 2013, 30(5):700-706(in Chinese).
[13] 赵宇, 王国玉, 黄彪. 考虑当地涡旋运动修正的湍流模型在非定常空化湍流流场计算中的应用[J]. 应用力学学报, 2014, 31(1):1-6. ZHAO Y, WANG G Y, HUANG B. Applications of LSC turbulence model on unsteady cavitating flows[J]. Chinese Journal of Applied Mechanics, 2014, 31(1):1-6(in Chinese).
[14] ZWART P J, GERBER A G, BELAMRI T. A two-phase flow model for predicting cavitation dynamics[C]//Proceedings of ICMF 2004 International Conference on Multiphase Flow. Yokohama, Japan:2004:1-11.
[15] 熊英华,刘影,李述林,等. 基于替代燃料的航空燃油泵内部空化特性[J].航空动力学报,2015,30(11):2607-2615. XIONG Y H, LIU Y, LI S L, et al. Cavitation characteristic in aviation fuel pump based on surrogate fuel[J]. Journal of Aerospace Power, 2015,30(11):2607-2615(in Chinese).
[16] 关醒凡. 泵的理论与设计[M]. 北京:机械工业出版社, 1987. GUAN X F. Pumps theory and design[M]. Beijing:China Machine Press, 1987(in Chinese).
[17] QUEIPO N V, HAFTKA R T, SHYY W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41:1-28.
[18] MACK Y, GOEL T, SHYY W, et al. Surrogate model-based optimization framework:A case study in aerospace design[J]. Studies in Computational Intelligence, 2007, 51:323-342.
[19] BASAK D, PAL S, PATRANABIS D C. Support vector regression[J]. Neural Information Processing Letters & Reviews, 2007, 11(10):203-224.
[20] GOEL T, HAFTKA R T, SHYY W, et al. Ensemble of surrogates[J]. Structure and Multidiscipline Optimization, 2007, 33(3):199-216.
[21] CHO Y C, DU W, GUPTA A, et al. Surrogate-based modeling and dimension-reduction techniques for thermo-fluid and energy systems[C]//ASME/JSME 20118th Thermal Engineering Joint Conference. American Society of Mechanical Engineers.New York:ASME, 2011:1-19.
/
〈 |
|
〉 |