扇翼飞行器翼型附面层控制数值模拟
收稿日期: 2015-12-15
修回日期: 2016-04-05
网络出版日期: 2016-04-08
基金资助
中央高校基本科研业务费专项资金;江苏高校优势学科建设工程资助项目
Numerical simulation on boundary layer control method of fanwing aircraft airfoil
Received date: 2015-12-15
Revised date: 2016-04-05
Online published: 2016-04-08
Supported by
Fundamental Research Funds for the Central Universities;A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
基于扇翼飞行器翼型特殊的几何形状及流场特性,在原有翼型的弧形槽下方和后缘加装控制阀门,通过调节阀门开启及开启尺寸的大小,利用弧形槽低压涡所产生的吸力对翼型后缘的附面层进行一定的控制,达到增升减阻的效果。通过采用计算流体力学的方法对其机理及阀门开启尺寸的影响进行了详细计算和分析,研究表明当阀门开启的尺寸为10 mm时,修改翼型的最大升力系数、失速迎角及相同迎角下的升力系数和推力系数均大于基本翼型;随着阀门开启尺寸的增大,修改翼型的最大升力系数和失速迎角均减小,但是在失速前,修改翼型在相同迎角下的升力系数大于基本翼型。此方法可以改变先前通过增大横流风扇的转速来提高其气动性能的做法,减小了能量的消耗,增大了整个飞行器的航程,为扇翼飞行器能够早日投入实际运用奠定了一定的理论基础。
杜思亮 , 芦志明 , 唐正飞 . 扇翼飞行器翼型附面层控制数值模拟[J]. 航空学报, 2016 , 37(6) : 1781 -1789 . DOI: 10.7527/S1000-6893.2016.0111
Based on the specific geometry of fanwing aircraft airfoil and flow field characteristics, we modify the airfoil by installation of control valves at the trailing edge and below the arc-groove. In order to take advantage of the lower pressure vortex to control the boundary layer of the trailing edge by adjusting the size of valve. CFD method is used to analyze the control method's mechanism and the influence of relative parameter. The calculation results show that when the size of the valve opens to 10 mm, the modified airfoil's maximum lift coefficient and stall angle of attack and the lift and thrust coefficients with the same angle of attack are greater than the basic airfoil. With the increase of the size of valve, the modified airfoil's maximum lift coefficient and stall angle of attack are reduced, but before stalling, the modified airfoil's lift coefficient is larger than the basic airfoil at the same angle of attack. This method gives us a new way to improve fanwing's aerodynamic performance, decrease power consumption and extend the flight range, which lays a certain theoretical foundation for the practical use of the fanwing aircraft as soon as possible.
[1] 孟琳, 叶永强, 李楠. 扇翼飞行器的研究进展与应用前景[J]. 航空学报, 2015, 36(8):2651-2661. MENG L, YE Y Q, LI N. Research progress and application prospects of fan-wing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2651-2661(in Chinese).
[2] 唐荣培, 唐正飞, 吉孟江. 风扇翼偏心涡的内部影响分析[C]//第二十九届全国直升机年会论文集. 北京:中国航空学会, 2013:6-10. TANG R P, TANG Z F, JI M J. Study on vortex influence factors of fan-wing aircraft[C]//The 29th Annual National Helicopter Conference. Beijing:CSAA, 2013:6-10(in Chinese).
[3] DANG T Q, KUMMER J D. Cross-flow fan propulsion system:7641144[P]. 2010-01-05.
[4] PEEBLES P. Aerodynamic lift generating device:527229[P]. 2003-03-04.
[5] DORNIER P. Multiple drive for aircraft having wings provided with transverse flow blowers:3065928[P]. 1962-11-27.
[6] MAZUR J S. A study of the cross flow fan[D]. Detroit, MI:Wayne State University, 1984.
[7] KUMMER J D, DANG T Q. Hight-lift propulsive with integrated cross flow fan[J]. Journal of Aircraft, 2006, 43(4):1059-1068.
[8] AHAD O, GRAHAM J M R. Flight simulation and testing of the fanwing experimental aircraft[J]. Aircraft Engineering and Aerospace Technology, 2007, 79(2):131-136.
[9] ASKARI S, SHOJAEEFARD M H. Numerical of flow an airfoil with a cross flow fan as a lift generating member in a new aircraft model[J]. Aircraft Engineering and Aerospace Technology, 2009, 81(5):59-64.
[10] ASKARI S, SHOJAEEFARD M H. Shape optimization of the airfoil comprising a cross flow fan[J]. Aircraft Engineering and Aerospace Technology, 2009, 81(5):407-415.
[11] ASKARI S, SHOJAEEFARD M H, GOUDARZI K. Experimental study of stall in an airfoil with forced airflow provided by an integrated cross-flow fan[J]. Proceedings of the Institution of Mechanical Engineers Part G:Journal of Aerospace Engineering, 2011, 225(G1):97-104.
[12] DUDDEMPUDI D, YAO Y, EDMONDSON D, et al. Computational study of flow over generic fan-wing airfoil[J]. Aircraft Engineering and Aerospace Technology, 2007, 79(3):238-244.
[13] SEYFANG G R. Fanwing-developments and applications[C]//28th Congress of International Council of the Aeronautical Sciences. Brisbane:ICAS, 2012:1-9.
[14] SEYFANG G R. Recent developments of the fan-wing aircraft[C]//The International Conference of the European Aerospace Socoeties. Brussels:CEAS, 2011:1-7.
[15] 牛中国, 蒋甲利, 李周复. 扇翼飞机二维机翼数值模拟分析研究[C]//大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集. 北京:中国航空学会, 2007:1-5. NIU Z G, JIANG J L, LI Z F. Study on numerical simulation of two-dimensional airfoil fan-wing aircraft[C]//Forum on Key Technologies of Large Aircraft and Aeronautical Society of China Proceedings of the 2007 Annual Meeting. Beijing:CSAA, 2007:1-5(in Chinese).
[16] 牛中国, 蒋甲利, 李周复. 扇翼飞行器风扇叶片偏角影响数值分析[J]. 气动研究与实验, 2008, 26(2):6-10. NIU Z G, JIANG J L, LI Z F. Numerical analysis of fanwing fan blades angle[J]. Aerodynamic Research & Experiment, 2008, 26(2):6-10(in Chinese).
[17] 牛中国, 蒋甲利, 刘捷, 等. 扇翼飞行器机翼设计与研究[J]. 气动研究与实验, 2009, 27(3):6-11. NIU Z G, JIANG J L, LIU J, et al. Design and research of fan-wing airfoil[J]. Aerodynamic Research & Experiment, 2009, 27(3):6-11(in Chinese).
[18] 蒋甲利, 牛中国, 刘捷, 等. 扇翼飞行器机翼布局研究[J]. 航空科学技术, 2009(3):30-35. JIANG J L, NIU Z G, LIU J, et al. Research on the wing composition of fanwing flight[J]. Aeronautical Science and Technology, 2009(3):30-35(in Chinese).
[19] 吴浩东. 风扇翼内部偏心涡特性研究[D]. 南京:南京航空航天大学, 2012. WU H D. Research on the characteristic of the eccentric vortex in the fanwing[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
[20] 王仁华, 张海黎, 黄同高, 等. 扇翼飞行器绕翼型流动数值研究[J]. 应用科技, 2012, 38(12):5-8. WANG R H, ZHANG H L, HUANG T G, et al. Numerical study of flow over fan-wing airfoil[J]. Applied Science and Technology, 2012, 38(12):5-8(in Chinese).
[21] 黄同高, 杨忠, 王仁华, 等. 扇翼飞行器纵向运动建模与控制方法[J]. 应用科技, 2011, 38(11):5-8. HUANG T G, YANG Z, WANG R H, et al. Longitudinal mathematical modeling and flight control of fan-wing aircraft[J]. Applied Science and Technology, 2011, 38(11):5-8(in Chinese).
[22] 陈滔. 扇翼飞行器飞行控制系统研究[D]. 南京:南京航空航天大学, 2014. CHEN T. Research on flight control system of fan-wing aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
[23] 邸南思. 面向机器人的扇翼翼型数值分析与实验研究[D]. 上海:华东理工大学, 2014. DI N S. Computational simulation and experimental research on fan-wing for flying robot[D]. Shanghai:East China University of Science and Technology, 2014(in Chinese).
[24] 唐荣培. 扇翼气动特性的实验研究[D]. 南京:南京航空航天大学, 2013. TANG R P. Aerodynamic experimental research on fan-wing[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013(in Chinese).
[25] 庞冲. 扇翼飞行器气动原理理论研究[D]. 南京:南京航空航天大学, 2015. PANG C. Theoretical research on aerodynamic principle of the fan-wing aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
[26] 张银辉. 风扇翼非定常流动的数值分析[D]. 南京:南京航空航天大学, 2011. ZHANG Y H. Numerical analysis of fan-wing unsteady flow[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011(in Chinese).
/
〈 | 〉 |