层流流动主/被动控制技术
收稿日期: 2016-03-30
修回日期: 2016-04-05
网络出版日期: 2016-04-05
Laminar flow active/passive control technology
Received date: 2016-03-30
Revised date: 2016-04-05
Online published: 2016-04-05
摩擦阻力在民机总阻力中占很大比重,减少摩擦阻力对改善民机性能和实现绿色航空具有重要意义。层流摩擦阻力远小于湍流摩擦阻力,因此扩大层流区,甚至实现全层流流动,是减阻的一个重要途径。目前形成了自然层流流动、全层流流动和混合层流流动控制(HLFC)3种层流流动主动控制技术。本文基于减阻和流动不稳定分析,对3种控制技术的概念、方法、优缺点、可带来的效益和应用层流流动控制技术的飞机的设计方法及维护(包括预防昆虫和冰粒等污染的措施)等方面作了较为系统的阐述。概要地介绍了X21A、Jetstar、Boeing 757等飞机的HLFC飞行试验验证项目,结果表明了层流流动主动控制技术的有效性和困难性。本文也从原理到飞行试验较为系统地介绍了一种层流流动被动控制技术。
朱自强 , 鞠胜军 , 吴宗成 . 层流流动主/被动控制技术[J]. 航空学报, 2016 , 37(7) : 2065 -2090 . DOI: 10.7527/S1000-6893.2016.0113
Friction drag is the major part of the total drag of a transport. Reducing the friction drag is essential for improving aircraft performance and its influence on the environment. Since laminar friction drag is much less than the turbulent one, one of the important measures for reducing the friction drag is to increase the laminar flow extent, and if possible, to realize a fully laminar flow. Three types of laminar flow active control technology, including natural laminar flow, fully laminar flow and hybrid laminar flow controls (HLFC), are formed through half centenary reseach. Based on the analysis of drag reduction and instability of flow, the concepts, methods, advantages and disadvantages, potential benefits and design methods of laminar flow control aircraft and its operational maintenance (including protection from insect contamination and ice accumulation) are described systematically in the present paper. The effectiveness and difficulties of active control are shown by briefly introducing the projects of HLFC flight tests of the X21A slotted suction flight tests, simulated airlines flight tests of Jetstar HLFC leading edge systems and Boeing 757 HLFC flight tests. A kind of passive control technology, from its mechanism to the flight demonstrator, is also systematically introduced in the present paper.
[1] SCHRAUF G. Status and perspectives of laminar flow[J].The Aeronautical Journal, 2005, 109(1102):639-644.
[2] THIBERT J J, RENEAUX J, SCHMITT R V. ONERA activities on drag reduction:ICAS-90-3.6.1[R]. 1990.
[3] LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1):10-25.
[4] 朱自强, 吴宗成, 陈迎春, 等. 民机空气动力学设计先进技术[M]. 上海:上海交通大学出版社, 2013. ZHU Z Q, WU Z C, CHEN Y C, et al. Advanced technology of aerodynamic design for commercial aircraft[M]. Shanghai:Shanghai Jiaotong University Press, 2013(in Chinese).
[5] HOLMES B J, CLIFFORD J, MARTIN G L, et al. Manufacturing tolerances for natural laminar flow airframe surface:SAE paper 850863[R]. Pennsylvania:SAE International, 1985.
[6] 张正国. NASA未来先进民用飞机与推进系统设计[J] 国际航空, 2010(2):56-59. ZHANG Z G. Advanced civil aircraft and propulsion system[J]. International Aviation, 2010(2):56-59(in Chinese).
[7] 李广义, 张晋平. 人类对飞行的双重追求[J]. 国际航空,2011(2):47-50. LI G Y, ZHANG J P.Developing air transport and protecting environment simultaneously[J]. International Aviation, 2011(2):47-50(in Chinese).
[8] 温坤. 《欧盟2050年航空发展展望》出台[J]. 国际航空,2011(6):67-69. WEN K. Flightpath 2050:Eurpe's aviation vision[J]. International Aviation, 2011(6):67-69(in Chinese).
[9] GREEN J E. Laminar flow control-back to the future:AIAA-2008-3738[R]. Reston:AIAA, 2008.
[10] RESHOTKO E. Boundary layer instability and transition[J]. Annual Review of Fluid Mechanics, 1976, 8:311-349.
[11] MACK L M. Boundary layer linear stability theory:AGARD Rep. 709[R]. Paris:AGARD, 1984.
[12] SARIC W S, REED H L, WHITE E B. Stability and transition of three dimensional boundary layers[J]. Annual Review of Fluid Mechanics, 2003, 35:413-440.
[13] SARIC W S, CARPENTER A L, REED H L. Passive control of transition in three dimensional boundary layers with emphasis on discrete roughness elements[J]. Philosophical Transactions of the Royal Society A, 2011, 369:1352-1364.
[14] DEYHLE H, BIPPES H. Disturbance growth in an unstable three dimensional boundary layer and its dependence on initial conditions[J]. Journal of Fluid Mechanics, 1996, 316:73-113.
[15] BIPPES H. Environmental conditions and transition prediction in 3D boundary layers:AIAA-1997-1906[R]. Reston:AIAA, 1997.
[16] KOHAMA Y, SARIC W S, HOOS J A. A high frequency, secondly instability of crossflow vortices that leads to transition[C]//Proceedings of Royal Aerospace Society Conference on Boundary Layer/transition Control. Cambridge:Peterhouse College, 1991.
[17] MALIK M R, LI F, CHANG C L. Crossflow disturbances in three dimensional boundary layers:nonlinear development, wave interaction and secondary instability[J]. Journal of Fluid Mechanics, 1994, 268:1-36.
[18] WASSERMANN P, KLOKER M. Mechanisms and control of crossflow vortex induced transition in a 3-D boundary layer[J]. Journal of Fluid Mechanics, 2002, 456:49-84.
[19] ARNAL D. Boundary layer transition:Predictions based on linear theory. Progressing transition modeling:AGARD Rep. 793[R]. Paris:AGARD, 1994.
[20] REED H L, SARIC W S. Stability of three dimensional boundary layers[J]. Annual Review of Fluid Mechanics, 1989, 21:235-284.
[21] RESHOTKO E. Boundary layer instability, transition and control:AIAA-1994-0001[R]. Reston:AIAA, 1994.
[22] REED H L, SARIC W S, ARNAL D. Linear stability theory applied to boundary layers[J]. Annual Review of Fluid Mechanics, 1996, 28:389-428.
[23] KACHANOV Y S. Experimental studies of three dimensional instability of boundary layer:AIAA-1996-1976[R]. Reston:AIAA, 1996.
[24] ARNAL D. Laminar-turbulent transition:Research and application in France:AIAA-1997-1905[R]. Reston:AIAA, 1997.
[25] CROUCH J D. Transition prediction and control for airplane application:AIAA-1997-1907[R]. Reston:AIAA, 1997.
[26] HERBERT T. Parabolized stability equations[J]. Annual Review of Fluid Mechanics, 1997, 29:245-283.
[27] HERBERT T. Transition prediction and control for airplane application:AIAA-1997-1908[R]. Reston:AIAA, 1997.
[28] REIBERT M S, SARIC W S. Review of swept wing transition:AIAA-1997-1816[R]. Reston:AIAA, 1997.
[29] RESHOTKO E. Progress, accomplishments and issues in transition research:AIAA-1997-1815[R]. Reston:AIAA, 1997.
[30] SARIC W S, CARRILLO R B, JR, REIBRT M S. Nonlinear stability and transition in 3-D boundary layers[J]. Meccanica, 1998, 33:469-487.
[31] SARIC W S, CARRILLO R B, JR, REIBERT M S. Leading edge roughness as a transition control mechanism:AIAA-1998-0781[R]. Reston:AIAA, 1998.
[32] BEPPES H. Basic experiments on transition in three dimensional boundary layers dominated by crossflow instability[J]. Progress in Aerospace Sciences, 1999, 35(4):363-412.
[33] HAYNES T S, REED H L. Simulation of swept wing vortices using nonlinear parabolized stability equation[J]. Journal of Fluid Mechanics, 2000, 405:325-349.
[34] SARIC W S, REED H L. Crossflow instabilities theory & technology:AIAA-2003-0771[R]. Reston:AIAA, 2003.
[35] HALL P, MALIK M R, POLL D. On the stability of an infinite swept attachment line boundary layer[J]. Philosophical Transactions of the Royal Society A, 1984, 395:229-245.
[36] PFENNINGER W. Laminar flow control-Laminarization:AGARD Rep. 654[R]. Paris:AGARD, 1977.
[37] MADDALON D V, BRASLOW A L. Simulated-airline-service flight tests of laminar-flow control with perforated-surface suction system:NASA TP 2966[R]. Washington, D.C.:NASA, 1996.
[38] FRORYAN J M. On the G rtler instability of boundary layers[J]. Progress in Aerospace Sciences, 1991, 28:235-271.
[39] SARIC W S. G rtler vortices[J]. Annual Review of Fluid Mechanics, 1994, 26:379-409.
[40] COLLIER F S. An overview of recent subsonic laminar flow control flight experiments:AIAA-1993-2987[R]. Reston:AIAA, 1993.
[41] ANSCOMBE A, ILLING L N. Wind tunnel observation of boundary layer transition at varies angel of swept back:ARC R&M 2698[R]. 1956.
[42] WAGNER R D,MADDLON D V, BARTLETT D W,et al. Laminar flow flight experiments-a review[M]//Natural Laminar Flow and Laminar Flow Control. New York:Springer-Verlag, 1992:23-72.
[43] GRAY W E. The effect of wing sweep on laminar flow:TM No.Aero255[R]. 1952.
[44] FUJINO M. Design and development of the Hondajet[J]. Journal of Aircraft, 2005, 42(3):755-764.
[45] FUJINO M, YOSHIZAKI Y, KAWAMURA Y. Natural-laminar-flow airfoil development for a lightweight business jet[J]. Journal of Aircraft, 2003, 40(4):609-615.
[46] KIRCHNER M E. Laminar flow:challenge and potential:NASA CP-2487[R]. Washington, D.C.:NASA, 1987.
[47] JOSLIN R D. Overview of laminar flow control:NASA TP-208705[R]. Washington, D.C.:NASA, 1998.
[48] WONG P W C, MAINA M. Flow control studies for military aircraft applications:AIAA-2004-2313[R]. Reston:AIAA, 2004.
[49] HOLMES B J, OBARA C J, YIP L P. Natural laminar flow experiments on modern airplane surfaces:NASA TP-2256[R]. Washington, D.C.:NASA, 1984.
[50] BRASLOW A L, FISHER M C. Design considerations for application of laminar flow control systems to transport aircraft, Aircraft drag prediction and reduction:AGARD Rep.723[R]. Paris:AGARD, 1985.
[51] HEFNER J N, SABO F E. Research in natural flow and laminar flow control:NASA CP-2387[R]. Washington, D.C.:NASA, 1987.
[52] HARRIS R V, HEFNER J N. NASA laminar-flow program-past, present, future:NASA CP 2487[R]. Washington, D.C.:NASA, 1987.
[53] WAGNER R D, MADDLON D V, BARTLETT D W, et al. Fifty years of laminar flow flightesting:SAE Paper 88139[R]. Pennsylvania:SAE International, 1988.
[54] HAFNER J. Laminar flow control:introduction and overview[M]//Natural Laminar Flow and Laminar Flow Control. New York:Springer-Verlag, 1992:1-22.
[55] PFENNINGER W, WEMURU C S. Design philosophy of long range LFC transport with advance supercritical LFC airfoils[M]//Natural Laminar Flow and Laminar Flow Control. New York:Springer-Verlag, 1992:177-222.
[56] SCHRAUF G, BIELER H. First European forum on laminar flow technology:DGLR-Bericht 92-06[R]. 1992.
[57] ARCARA P C, BARTLETT D W, MECULLERS L A. Analysis for the application of hybrid laminar flow control to a long rang subsonic transport aircraft:SAE Paper 912113[R]. Pennsylvania:SAE International, 1991.
[58] CLARK R L, LANGE R H, WAGNER R D. Application of advanced technologies to future military transports:AD P006254[R]. 1990.
[59] PARIKH P G, NAGEL A L. Application of laminar flow control to supersonic transport configuration:NASA CR-181917[R]. Washington, D.C.:NASA, 1990.
[60] POWELL A G, AGRAWAL S, LACEY T R. Feasibility and benefits of laminar flow control on supersonic cruise airplane:NASA CR-181817[R]. Washington, D.C.:NASA, 1989.
[61] HANKS G W, LEDBETTER G E, DAVENPORT F J, et al. Hybrid laminar flow control study:NASA CR 165930[R]. Washington, D.C.:NASA, 1982.
[62] BUSHNELL D M, MALIK M R, HARVEY W D. Transition prediction in external flows via linear stability theory[R]. 1989.
[63] COUSTEIX J. Basic concepts on boundary layers:AGARD Rep. 786[R]. Paris:AGARD, 1992.
[64] ARNAL D, CASALIS G. Laminar-turbulent transition prediction in three-dimensional flows[J]. Progress in Aerospace Sciences, 2000, 36:173-191.
[65] SMITH A M O, GAMBERONI N. Transition,pressure gradient and stability theory:Report ES 26388[R]. California:Douglas Aircraft Co., 1956.
[66] VAN INGEN J L. A suggested semi-empirical method for the calculation of boundary layer transition region:Report UTH-24[R]. Delft:University of Technology, 1956.
[67] OERTEL H. 普朗特流体力学基础[M]. 朱自强, 钱翼稷, 李宗瑞, 译. 北京:科学出版社,2008. OERTEL H. Prandtl-Fuhrer durch die stromungslehre[M]. ZHU Z Q, QIAN Y J, LI Z R, translated. Beijing:Science Press, 2008(in Chinese).
[68] NAYFEH A. Stability of three dimensional boundary layers[J]. AIAA Journal, 1980, 18(4):406-416.
[69] CEBECI T, STEWARTSON K. On stability and transition in three dimensional flows[J]. AIAA Journal, 1980, 18(4):398-405.
[70] ARNAL D, CASALIS G, JUILLLEN J C. Experimental and theoretical analysis of natural transition on "infinite" swept wing[R]. 1990
[71] MACK L M. Stability of three dimensional boundary layer on swept wings at transonic speeds[R]. 1989.
[72] SCHRAUF G. Transition prediction using different linear stability analysis strategies:AIAA-1994-1848[R]. Reston:AIAA, 1994.
[73] SCHRAUF G, PERRAUD J, VITTIELLO D, et al. A comparison of linear stability theories using F100-flight test[R]. 1996.
[74] ARNAL D, GASPARIAN G, SALINAS H. Recent advances in theoretical methods for laminar-turbulent transition prediction:AIAA-1998-0223[R]. Reston:AIAA, 1998.
[75] ARNAL D, CASALIS G, SCHFRAUF G. The Euro TRANS project[R]. 1996.
[76] MOENS F, PERRAUD J, KRUMBEIN A M, et al. Transition prediction and impact on a 3D high lift wing configuration:AIAA-2007-4302[R]. Reston:AIAA, 2007.
[77] PERRAUD J, CLIQUET J, HOUDEVILLE R, et al. Transport aircraft three-dimensional high lift wing numerical transition prediction[J]. Journal of Aircraft, 2008, 45(5):1554-1563.
[78] KRUMBEIN A M. Automatic transition prediction and application to 3D wing configuration:AIAA-2006-0914[R]. Reston:AIAA, 2006.
[79] KRUMBEIN A M. Automatic transition prediction and application to three-dimensional high lift configuration[J]. Journal of Aircraft, 2007, 44(3):918-928.
[80] TOULOUGE T, PONSIW J, PERRAUD J, et al. Automatic transition prediction for RANS computations applied to a genetic high lift wing:AIAA-2007-1086[R]. Reston:AIAA, 2007.
[81] STOCK H W, DEGENHARDT E. A Simplified methods for transition prediction in two-dimensional incomprehensible boundary layers[J]. Zeitung Für Flugwissenschaft and Weltraum-forschung, 1989, 13:16-30.
[82] STOCK H W, HASSE W. Some aspects of linear stability calculations in industrial application[R]. 1996.
[83] CASALIS G, ARNAL D. ELFINⅡ Subtask2.3:Database method-development and validation of the simplified method for pure crossflow instability at low speed:ELFINⅡ, Technical report 45[R]. ONERA-CERT, 1996.
[84] ROGENDAAL R A. Variable-sweep transition flight experiment (VSTFE)-parametric pressure distribution boundary layer stability study and wing glove design task:NASA CR 3992[R]. Washington, D.C.:NASA, 1986.
[85] ROGENDAAL R A. Variable-sweep transition flight experiment (VSTFE)-stability code development and clean-up glove analysis:NASA CP 2847[R]. Washington, D.C.:NASA, 1987.
[86] STOCK H W. Infinite swept wing RANS computations with eN transition prediction-feasibility study:IB-24-2003/12[R]. DLR, 2002.
[87] CAMPBELL R L, CAMPBELL M L, STREIT T. Progress toward efficient laminar flow analysis and design:AIAA-2011-3527[R]. Reston:AIAA, 2011.
[88] GLICK P A. The distribution of insects, spiders, and mites in the air:Tech. Bull. No.673[R]. 1939
[89] COLEMAN W S. Roughness due to insects in boundary layer and flow control[M]. LACHMAN G V, editor. Pergamon Press, 1961:682-747.
[90] FOWELL L R, ANTONATOS P P. Some results from the X-21A program-part2:Laminar flow flight test results on the X21-A. In recent developments in boundary layer research-part IV:AGARD graph 97[R]. Paris:AGARD, 1965.
[91] DAVIS R E, MADDALON D V, WAGNER R D. Performance of laminar flow leading edge articles in cloud encounters:NASA CP-2487[R]. Washington, D.C.:NASA, 1987:161-193.
[92] WAGNER R D, MADDALOR D V, FISHER D F. Laminar flow control leading edge systems in simulated airline service[J]. Journal of Aircraft, 1990, 27(3):239-244.
[93] MADDALON D V. Hybrid laminar flow control flight research:NASA TM 4331[R]. Washington, D.C.:NASA, 1991.
[94] CROUCH J D. Boundary layer transition prediction for laminar flow control:AIAA-2015-2472[R]. Reston:AIAA, 2015.
[95] GRAHAM W. 欧洲启动"清洁天空"2计划[J]. 国际航空, 2014(8):79-80. GRAHAM W. Europe's clean sky 2 program begins[J]. International Aviation, 2014(8):79-80(in Chinese).
[96] REIBERT M S, SARIC W S, CARRILLO R B, JR, et al. Experiments in nonlinear saturation of stationary crossflow vortices in a swept wing boundary layer:AIAA-1996-0184[R]. Reston:AIAA, 1996.
[97] BELISLE M J, NEALE T P, REED H L, et al. Design of a swept wing laminar flow control flight experiment for transonic aircraft:AIAA-2010-4381[R]. Reston:AIAA, 2010.
[98] BELISLE M J, ROBERTS M W, TUFTS M W, et al. Design of the subsonic aircraft roughness glove experiment (SARGE):AIAA-2011-3524[R]. Reston:AIAA, 2011.
[99] HARTSHORN F, BELISLE M J, REED H L. Computational/optimization of a natural laminar flow experimental wing glove:AIAA-2012-0870[R]. Reston:AIAA, 2012.
[100] ROBERTS M W, REED H L, SARIC W S. A transonic laminar flow wing glove flight experiment:computational evaluation and linear stability:AIAA-2012-2668[R]. Reston:AIAA, 2012.
[101] BELISLE M J, ROBERTS M W, WILLIAMS T C, et al. A transonic laminar flow wing glove flight experiment:overview and design optimization:AIAA-2012-2667[R]. Reston:AIAA, 2012.
[102] MALIK M, LIAO W, LEE-RAUSCH F, et al. Computational analysis of the G-Ⅲ laminar flow glove:AIAA-2011-3525[R]. Reston:AIAA, 2012.
[103] MALIK M, LIAO W, LI F, et al. DRE-enhanced swept wing natural laminar flow at high Reynolds numbers:AIAA-2013-0412[R]. Reston:AIAA, 2013.
[104] 王元元, 杨敏. NASA开发亚音速研究实验平台[J]. 国际航空, 2014(10):70-72. WANG Y Y, YANG M. NASA develops subsonic research aircraft test[J]. International Aviation, 2014(10):70-72(in Chinese).
/
〈 | 〉 |