材料工程与机械制造

钛板刚度对钻削轴向力和出口毛刺的影响

  • 骆彬 ,
  • 张开富 ,
  • 李原 ,
  • 程晖 ,
  • 刘书暖
展开
  • 1. 西北工业大学 现代设计与集成制造技术教育部重点实验室, 西安 710072;
    2. 西北工业大学 机电学院, 西安 710072
骆彬 男,博士研究生。主要研究方向:先进连接技术与装备。Tel:029-88460773,E-mail:bbnroad@163.com;

收稿日期: 2016-02-23

  修回日期: 2016-03-23

  网络出版日期: 2016-03-31

基金资助

国家自然科学基金(51305352,51475379);中央高校基本科研业务费专项资金(3102014JCS05008)

Influence of stiffness on thrust force and exit burr in drilling titanium plates

  • LUO Bin ,
  • ZHANG Kaifu ,
  • LI Yuan ,
  • CHENG Hui ,
  • LIU Shunuan
Expand
  • 1. The Key Lab of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China;
    2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2016-02-23

  Revised date: 2016-03-23

  Online published: 2016-03-31

Supported by

National Natural Science Foundation of China (51305352, 51475379); the Fundamental Research Funds for the Central Universities (3102014JCS05008)

摘要

针对弱刚性钛合金薄板钻削过程,从理论和实验两方面研究工件刚度对轴向力和出口毛刺的影响规律。考虑工件变形与轴向力的相互影响,建立弱刚性钛板钻削轴向力预测模型,求解工件变形带来的附加进给率,结合提出的毛刺厚度预测方法和高度累积判定式,实现工件刚度的影响规律分析,并设计以刚度和进给率为变量的钻削实验。实验结果表明,随着工件刚度的减小,轴向力曲线上升段延长、下降段缩短,最大值略微减小;而毛刺高度减小、厚度增加,类型从冠状变为均匀状。轴向力预测曲线与实验曲线趋势相符,峰值预测误差在8%以内;毛刺尺寸和类型的理论分析结果与实验结果具有一致性。工件刚度以改变实际进给率的方式影响钻削过程,因此弱刚性钛板钻削出口毛刺的抑制要综合考虑工件刚度的影响。

本文引用格式

骆彬 , 张开富 , 李原 , 程晖 , 刘书暖 . 钛板刚度对钻削轴向力和出口毛刺的影响[J]. 航空学报, 2016 , 37(7) : 2321 -2330 . DOI: 10.7527/S1000-6893.2016.0097

Abstract

For drilling process of thin titanium plates, the influence of workpiece's stiffness on thrust force and exit burr is investigated experimentally and theoretically. The interaction of workpiece's bending and thrust force has been studied. Additional feed rate caused by bending of workpiece could be obtained through differential of deflection. Then, a model is developed to predict thrust force for plates with low stiffness. Equations for burr thickness calculation and burr growth deciding are also established to analyze the influence of stiffness on burr type and size. Drilling experiments are conducted with varying stiffness and feed rate. Experimental results show that with the decrease of workpiece stiffness thrust force rises slowly, descends quickly, the maximum value decreases slightly; while, burr type changes from crown to uniform, and burr becomes lower and thicker. Predicted curve of thrust force has the same trend with the experimental curves. Predicted errors of maximum values are within 8%. Analytical results of burr type and size agree with the experimental results. Stiffness affects drilling process through changing the actual feed rate, thus stiffness should be considered to control burr in drilling titanium plates with low stiffness.

参考文献

[1] DORNFELD D A, KIM J S, DECHOW H, et al. Drilling burr formation in titanium alloy Ti-6Al-4V[J]. CIRP Annals-Manufacturing Technology, 1999, 48(1):73-76.
[2] 曲巍崴, 侯鹏辉, 杨根军, 等. 机器人加工系统刚度性能优化研究[J]. 航空学报, 2013, 34(12):2823-2832. QU W W, HOU P H, YANG G J, et al. Research on the stiffness performance for robot machining systems[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2823-2832(in Chinese).
[3] 王珉, 薛少丁, 蒋红宇, 等. 飞机大部件对接自动化制孔单向压紧力分析[J]. 南京航空航天大学学报, 2012, 44(4):553-558. WANG M, XUE S D, JIANG H Y, et al. One-side pressure-force analysis of automatic drilling of aircraft fuselage section-joint assembly[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2012, 44(4):553-558(in Chinese).
[4] CAPELLO E. Workpiece damping and its effect on delamination damage in drilling thin composite laminates[J]. Journal of Materials Processing Technology, 2004, 148(2):186-195.
[5] KLOTZ S, GERSTENMEYER M, ZANGER F, et al. Influence of clamping systems during drilling carbon fiber reinforced plastics[J]. Procedia CIRP, 2014, 13:208-213.
[6] AURICH J C, DORNFELD D, ARRAZOLA P J, et al. Burrs-analysis, control and removal[J]. CIRP Annals-Manufacturing Technology, 2009, 58(2):519-542.
[7] ZHENG X, DONG D, HUANG L, et al. Research on fixture hole drilling quality of printed circuit board[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(4):525-534.
[8] KO S L, CHANG J E. Development of drill geometry for burr minimization in drilling[J]. CIRP Annals-Manufacturing Technology, 2003, 52(1):45-48.
[9] KO S L, LEE J K. Analysis of burr formation in drilling with a new-concept drill[J]. Journal of Materials Processing Technology, 2001, 113(1-3):392-398.
[10] BHANDARI B, HONG Y S, YOON H S, et al. Development of a micro-drilling burr-control chart for PCB drilling[J]. Precision Engineering, 2014, 38(1):221-229.
[11] GARG A, TAI K, VIJAYARAGHAVAN V, et al. Mathematical modelling of burr height of the drilling process using a statistical-based multi-gene genetic programming approach[J]. International Journal of Advanced Manufacturing Technology, 2014, 73(1-4):113-126.
[12] KARNIK S R, GAITONDE V N. Development of artificial neural network models to study the effect of process parameters on burr size in drilling[J]. International Journal of Advanced Manufacturing Technology, 2008, 39(5-6):439-453.
[13] 洪华舟, 韦红余, 陈文亮, 等. 航空薄壁件制孔毛刺生长控制工艺研究[J]. 中国机械工程, 2012, 23(19):2312-2316. HONG H Z, WEI H Y, CHEN W L, et al. Control process for drilling burr growth of aerospace thin-walled workpiece[J]. China Mechanical Engineering, 2012, 23(19):2312-2316(in Chinese).
[14] SAUNDERS L K L, MAUCH C A. An exit burr model for drilling of metals[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2001, 123(4):562-566.
[15] KIM J, DORNFELD D A. Development of an analytical model for drilling burr formation in ductile materials[J]. Journal of Engineering Materials and Technology, Transactions of the ASME, 2002, 124(2):192-198.
[16] CHANG S S F, BONE G M. Burr height model for vibration assisted drilling of aluminum 6061-T6[J]. Precision Engineering, 2010, 34(3):369-375.
[17] SEGONDS S, MASOUNAVE J, SONGMENE V, et al. A simple analytical model for burr type prediction in drilling of ductile materials[J]. Journal of Materials Processing Technology, 2013, 213(6):971-977.
[18] SUI J, SUGITA N, ISHⅡ K, et al. Mechanistic modeling of bone-drilling process with experimental validation[J]. Journal of Materials Processing Technology, 2014, 214(4):1018-1026.
[19] LUO B, LI Y, ZHANG K, et al. A novel prediction model for thrust force and torque in drilling interface region of CFRP/Ti stacks[J]. International Journal of Advanced Manufacturing Technology, 2015, 81(9-12):1497-1508.
[20] TOROPOV A, KO S L. A model of burr formation in the feed direction in turning[J]. International Journal of Machine Tools and Manufacture, 2006, 46(15):1913-1920.
[21] GAO Y, WU D, NAN C, et al. The interlayer gap and non-coaxiality in stack drilling[J]. International Journal of Machine Tools and Manufacture, 2015, 99:68-76.
[22] LAZAR M B, XIROUCHAKIS P. Experimental analysis of drilling fiber reinforced composites[J]. International Journal of Machine Tools and Manufacture, 2011, 51(12):937-946.
[23] 罗蒙. 金属切削过程中毛刺形成机理及控制方法的研究[D]. 上海:上海交通大学, 2007:22-23. LUO M. Mechanism and control methods of burr formation in metal cutting process[D]. Shanghai:Shanghai Jiao Tong University, 2007:22-23(in Chinese).

文章导航

/