三角翼大迎角风洞试验支架干扰数值模拟研究
收稿日期: 2016-01-11
修回日期: 2016-03-22
网络出版日期: 2016-03-25
基金资助
国家自然科学基金(11072111)
Numerical simulation investigation of aerodynamic interference of sting support in wind tunnel test of a delta wing at big angles of attack
Received date: 2016-01-11
Revised date: 2016-03-22
Online published: 2016-03-25
Supported by
National Natural Science Foundation of China (11072111)
现代战争要求战斗机能够在大迎角(AOA)状态下进行过失速飞行,对飞机大迎角绕流流场的研究主要的方法有风洞试验和数值模拟。在大迎角风洞试验中,常用的是尾支撑方法,支架的存在会对模型的试验结果产生一定的影响,本文通过数值模拟来对这个影响进行研究。以开源计算流体力学软件OpenFOAM 2.3为平台,采用PIMPLE算法求解Navier-Stokes(N-S)方程,PIMPLE算法是SIMPLE(Semi-Implicit Method for Pressure-linked Equations)算法和PISO(Pressure Implicit with Splitting of Operator)算法的结合体;采用基于有限体积的空间离散方法和空间二阶精度的线性插值方法,时间离散采用后向差分方法,湍流模型采用SA-DDES(Spalart-Allmaras-Delayed Detached Eddy Simulation)模型。为了验证方法的可靠性,首先对0°、10°、30°、50°、70°以及90°迎角下的有支架三角翼绕流流场进行计算,并将计算结果与试验结果进行对比,两者吻合较好。在此基础上,数值模拟了无支架的三角翼绕流流场,对比有/无支架情况下数值模拟结果,得到支架对三角翼绕流流场、背风面压强分布和气动力的影响。计算结果表明:大迎角情况下,有支架与无支架时相比,支架的存在会影响三角翼附近的流场(但是不会改变涡系等流动结构)、改变翼表面压强分布,从而导致三角翼的法向力系数和俯仰力矩系数发生明显变化。
张军 , 艾宇 , 黄达 , 刘晶 . 三角翼大迎角风洞试验支架干扰数值模拟研究[J]. 航空学报, 2016 , 37(8) : 2481 -2489 . DOI: 10.7527/S1000-6893.2016.0095
In current wars, the fighter is required to be capable of stalled flight at a high angle of attack (AOA). The investigation of the aerodynamic characteristics of the aircraft mainly relies on wind tunnel test and numerical simulation. In the wind tunnel test of high angle of attack, the commonly used method is to use sting support. The presence of the sting support can have an effect on the model testing results which will be numerically investigated in the present paper. The open source software package OpenFOAM 2.3 is used as computational fluid dynamics (CFD) computing platform, the PIMPLE algorithm is applied to solving Navier-Stokes (N-S) equations. The PIMPLE algorithm is a combination of both semi-implicit method for pressure-linked equations (SIMPLE) and pressure implicit with splitting of operator (PISO). A finite volume method is used for spatial discretization. Second order linear interpolation is also adopted. Backward differentiation method is to deal with time discretization. The employed turbulence model is Spalart-Allmaras-delayed detached eddy simulation (SA-DDES). In order to verify the reliability of the numerical method, the flow filed of the delta wing with sting support is computed at angles of attack of 0°, 10°, 30°, 50°, 70°, and 90° firstly. The obtained results are compared to the testing data and they are in close agreement. After that, the numerical simulation of the flow field of the delta wing without sting support is executed. The influence of the sting support on the flow filed, pressure coefficient distribution on the leeward side and aerodynamic coefficient is obtained through comparing the numerical results with and without sting support. In contrast to the situation without the sting support, at a high angle of attack, the presence of the sting support affects the flow field around the delta wing (but does not change the vortices and flow structure) and alters the pressure coefficient distribution on the wing leeward side. Therefore, normal force and pitching moment coefficients have significant changes.
[1] 程厚梅. 风洞实验干扰与修正[M]. 北京:国防工业出版社, 2003:197. CHEN H M.Interference and correction in wind tunnel experiment[M]. Beijing:National Defense Industry Press, 2003:197(in Chinese).
[2] 王勋年, 祝明红, 孙传宝. 低速大迎角尾撑支架干扰试验研究[J]. 实验流体力学, 2007, 21(2):8-12. WANG X N, ZHU M H, SUN C B.Investigation on the interference of rear sting supports at high angle of attack in low speed wind-tunnel[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(2):8-12(in Chinese).
[3] 祝明红, 孙海生, 金玲, 等. 低速大迎角张线尾撑系统支架干扰影响研究[J]. 实验流体力学, 2011, 25(3):1-5. ZHU M H, SUN H S, JIN L, et al. Study on the support interference of wire-assistant sting support at high angle of attack in low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3):1-5(in Chinese).
[4] 苏继川, 黄勇, 李永红, 等. 小展弦比飞翼亚、跨、超声速支撑干扰研究[J]. 空气动力学学报, 2015, 33(3):289-295. SU J C, HUANG Y, LI Y H, et al. Support interference of low-aspect-ratio flying-wing from subsonic to supersonic speed[J]. Acta Aerodynamica Sinica, 2015, 33(3):289-295(in Chinese).
[5] 杨贤文, 刘昕. 运输机模型高速风洞试验支撑形式及支撑干扰研究[J]. 空气动力学学报, 2015, 33(6):721-727. YANG X W, LIU X. Support form and support interference on transport aircraft model in high speed wind tunnel[J]. Acta Aerodynamica Sinica, 2015, 33(6):721-727(in Chinese).
[6] 唐敏中, 李周复, 于文勇, 等. 三角翼低速动态大攻角气动特性试验研究[J]. 空气动力学学报, 1994, 12(4):367-374. TANG M Z, LI Z F, YU W Y, et al. Experimental study on aerodynamic characteristics of delta wing at low speed and high angle of attack[J]. Acta Aerodynamica Sinica, 1994, 12(4):367-374(in Chinese).
[7] 张文华, 李志强, 丁克文, 等. 三角翼过失速非定常洞壁干扰修正[J]. 航空学报, 1997, 18(2):215-219. ZHANG W H, LI Z Q, DING K W, et al. Unsteady wall corrections for a delta wing oscillating in pitch to very high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 1997, 18(2):215-219(in Chinese).
[8] 黄达, 李志强, 丁克文, 等. 三角翼大幅度俯仰运动非定常洞壁干扰实验研究[J]. 南京航空航天大学学报, 2003, 35(1):13-17. HUANG D, LI Z Q, DING K W, et al. Wall interference in unsteady force tests for delta wing in large amplitude pitching motions[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2003, 35(1):13-17(in Chinese).
[9] SUN H S, JIANG Y B, LIU Z T, et al. Experimental research on the high angle of attack aerodynamic characteristics of an 80°/65° double-delta wing[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6):6-12.
[10] 陶洋, 赵忠良, 李浩, 等. 80°/65°双三角翼滚转稳定特性预测研究[J]. 实验流体力学, 2013(6):43-46. TAO Y, ZHAO Z L, LI H, et al. Investigation on dynamic behavior forecast of 80°/65° double-delta wing in roll at high incidence[J]. Journal of Experiments in Fluid Mechanics, 2013(6):43-46(in Chinese).
[11] 王光学, 邓小刚, 刘化勇, 等. 高阶精度格式WCNS在三角翼大攻角模拟中的应用研究[J]. 空气动力学学报, 2012, 30(1):28-34. WANG G X, DENG X G, LIU H Y, et al. Application of high-order scheme (WCNS) at high angles of incidence for delta wing[J]. Acta Aerodynamica Sinica, 2012, 30(1):28-34(in Chinese).
[12] 王光学, 邓小刚, 王运涛, 等. 三角翼涡破裂的高精度数值模拟[J]. 计算物理, 2012, 29(4):489-494. WANG G X, DENG X G, WANG Y T, et al. High-order numerical simulation of vortex breakdown on delta wing[J]. Chinese Journal of Computational Physics, 2012, 29(4):489-494(in Chinese).
[13] 杨小亮, 刘伟, 赵云飞, 等. 80° 后掠三角翼强迫俯仰、自由滚转双自由度耦合运动特性数值研究[J]. 空气动力学学报, 2011, 29(4):421-426. YANG X L, LIU W, ZHAO Y F, et al. Numerical investigation of the characteristics of double degree-of-freedom motion of an 80° delta wing in force-pitch and free-roll[J]. Acta Aerodynamica Sinica, 2011, 29(4):421-426(in Chinese).
[14] 黄国创, 王玉明, 曹桂兴. 三角翼大攻角俯仰振荡的动力学"滞后"现象机理研究[J]. 中国科学(A辑), 1994, 24(5):498-504. HANG G C, WANG Y M, CAO G X. Study on the mechanism of the dynamic "lag" in the large angle of attack of the delta wing[J]. Science in China (Series A), 1994, 24(5):498-504(in Chinese).
[15] 李沛峰, 张彬乾. 三角翼大迎角绕流特性数值模拟的网格处理技术研究[J]. 航空计算技术, 2008, 38(2):22-26. LI P F, ZHANG B Q. Study on grid generation of numerical simulation for vortical flow over a delta wing at high angle of attack[J]. Aeronautical Computing Technique, 2008, 38(2):22-26(in Chinese).
[16] 刘昕, 陈亮中, 林敬周. 双三角翼拉升流场特性数值模拟研究[J]. 计算力学学报, 2012, 29(6):905-911. LIU X, CHEN L Z, LIN J Z. Numerical simulation on dynamic characteristics of double-delta wing flow field during pitch-up motion[J]. Chinese Journal of Computational Mechanics, 2012, 29(6):905-911(in Chinese).
[17] 刘杰, 刘沛清, 闫指江. 中等后掠角三角翼前缘双涡结构的形成机理数值研究[J]. 空气动力学学报, 2012, 30(6):767-771. LIU J, LIU P Q, YAN Z J. Numerical investigations of formation mechanism about a dual leading-edge vortex structure of a delta wing with medium leading-edge sweep angle[J]. Acta Aerodynamica Sinica, 2012, 30(6):767-771(in Chinese).
[18] 韩冰, 徐敏, 李广宁, 等. 双三角翼及其翼身组合的滚转运动特性比较研究[J]. 航空学报, 2014, 35(2):417-426. HAN B, XU M, LI G G, et al. Comparative research on the dynamic rolling characteristics of double delta wing and wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):417-426(in Chinese).
[19] 张付昆, 李栋. 前缘钝度和雷诺数对三角翼流场的影响[J]. 科学技术与工程, 2013, 13(16):4741-4746. ZHANG F K, LI D. Reynolds numbers and leading-edge bluntness effects on delta wing[J]. Science Technology and Engineering, 2013, 13(16):4741-4746(in Chinese).
[20] 李喜乐, 杨永. 带副翼偏转的三角翼自由滚转运动数值模拟[J]. 航空学报, 2012, 33(3):453-462. LI X L, YANG Y. Numerical simulation of the free rolling motion of a delta wing configuration with aileron deflection[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3):453-462(in Chinese).
[21] SPALART P R, JOU W H, STRELETS M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[J]. Advances in DNS/LES, 1997(1):4-8.
[22] LI Q, SUN D, ZHANG H X. Detached-eddy simulations and analysis on new vertical flows over a 76/40° double delta wing[J]. Science China Physics, Mechanics & Astronomy, 2013, 56(6):1062-1073.
[23] SPALART P R,DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(2):181-195.
[24] LVDEKE H, LEICHER S. Unsteady CFD analysis of a delta wing fighter configuration by delayed detached eddy simulation[M]//Advances in Hybrid RANS-LES Modeling. Berlin Heidelberg:Springer, 2008:202-211.
/
〈 | 〉 |