1200℃高温环境下板结构热模态试验研究与数值模拟
收稿日期: 2015-11-17
修回日期: 2016-03-10
网络出版日期: 2016-03-16
基金资助
国家自然科学基金(11427802)
Test research and numerical simulation on thermal modal of plate structure in 1200℃ high-temperature environments
Received date: 2015-11-17
Revised date: 2016-03-10
Online published: 2016-03-16
Supported by
National Natural Science Foundation of China (11427802)
高超声速飞行器高马赫数飞行时,翼、舵及垂尾等板形姿态控制结构将会面临极为严酷的高温环境,为了获得难于实测的结构在高温与振动复合环境下的热模态参数,本文将瞬态气动热试验模拟系统与振动试验系统相结合,建立了高温热/振联合试验测试系统,实现了高达1200℃热环境下矩形板结构的模态频率等关键振动参数的试验测试。同时,对矩形板结构的热模态特性进行了数值计算,并将试验结果与计算结果进行对比验证。试验中通过自行研制的耐高温陶瓷导杆引伸装置将结构上的振动信号传递至高温热场之外,使用常温加速度传感器对振动信号进行参数识别;并运用时-频联合分析技术对试验数据进行分析处理。本文所获得的高温环境(200~1100℃)下矩形板结构的模态频率的试验结果与数值计算结果取得了比较好的一致性,验证了本试验方法的可信性及可用性。本研究结果为高超声速飞行器翼舵结构在高温环境下的振动特性分析以及安全可靠性设计提供了重要的试验手段和参考依据。
吴大方 , 王岳武 , 商兰 , 蒲颖 , 王怀涛 . 1200℃高温环境下板结构热模态试验研究与数值模拟[J]. 航空学报, 2016 , 37(6) : 1861 -1875 . DOI: 10.7527/S1000-6893.2016.0075
When the hypersonic aircraft flies at a high Mach number, the plate-like attitude control structures, such as the wings and rudders, will be exposed to an extremely high-temperature environment. In this paper, in order to obtain the thermal modal parameters of structure that are difficult to measure, high-temperature transient heating test system and vibration test system are combined to establish a thermal/vibration test system and the experimental measurement for key vibration characteristic parameters of structure in a thermal-vibration coupled environment up to 1200℃ (e.g. the modal frequency and modal vibration shape) is performed. Meanwhile, the numerical simulation on the thermal modal characteristics of rectangular plate is carried out and the test results are compared with the numerical results. In the test, a self-developed extension configuration of high-temperature-resistant ceramic pole is used to transfer the vibration signals of structure to nonhigh temperature zone, and the acceleration sensors are applied to identifying the vibration signals. Test data are analyzed by a time-frequency joint analysis technique. The tested modal frequencies of the plate in high temperature environments ranging from 200℃ to 1100℃ coincide favorably with calculated results, which verifies the credibility and effectiveness of the proposed experimental methods. The research results can provide an important basis for the dynamic performance analysis and safety design of structure under high-temperature thermal-vibration conditions for hypersonic aircraft.
[1] EARL T. Thermal structures for aerospace applications[M]. Reston:AIAA, 1996:5-8.
[2] LEE I, LEE D M, OH L K. Supersonic flutter analysis of stiffened laminated plates subjected to thermal load[J]. Journal of Sound and Vibration, 1999, 234(1):49-67.
[3] BROWN A M. Temperature-dependent modal test analysis correlation of X-34 FASTRAC composite rocket nozzle[J]. Journal of Propulsion and Power, 2002, 18(2):284-288.
[4] CHAKRAVERTY S, PRADHAN K K. Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions[J]. Aerospace Science and Technology, 2014, 36:132-156.
[5] FAN Y, WANG H. Nonlinear vibration of matrix cracked laminated beams containing carbon nanotube reinforced composite layers in thermal environments[J]. Composite Structures, 2015, 124:35-43.
[6] VOSTEEN L F, MCWITHEY R R, THOMSON R G. Effect of transient heating on vibration frequencies of some simple wing structures:NACA TN 4054[R]. Washington, D.C.:NACA, 1955.
[7] VOSTEEN L F, FULLER K E. Behavior of a cantilever plate under rapid-heating conditions:NACA RM L55E20[R]. Washington, D.C.:NACA, 1955.
[8] MCWITHEY R R, VOSTEEN L F. Effects of transient heating on the vibration frequencies of a prototype of the X-15 wing:NACA TN D-362[R]. Washington, D.C.:NACA, 1960.
[9] KEHOE M W, SNYDER H T. Thermoelastic vibration test techniques:NASA TM 101742[R]. Washington, D.C.:NASA, 1991.
[10] SNYDER H T, KEHOE M W. Determination of the effects of heating on modal characteristics of an aluminum plate with application to hypersonic vehicles:NASA TM 4274[R]. Washington, D.C.:NASA, 1991.
[11] NATALIE D S. High-temperature modal survey of a hot-structure control surface[C]//Proceedings of the 27th International Congress of the Aeronautical Sciences. Nice, France:French Society of Aeronautics and Astronautics, 2010, 3:2091-2110.
[12] JEON B H, KANG H W, LEE Y S. Free vibration characteristics of rectangular plate under rapid thermal loading[C]//The 9th International Congress on Thermal Stresses. Budapest:Hungarian Academy of Sciences, 2011.
[13] CHENG H, LI H, ZHANG W, et al. Effects of radiation heating on modal characteristics of panel structures[J]. Journal of Spacecraft and Rockets, 2015, 52(4):1228-1235.
[14] 吴大方, 赵寿根, 潘兵, 等. 高速巡航导弹翼面结构热-振联合试验研究[J]. 航空学报, 2012, 33(9):1633-1642. WU D F, ZHAO S G, PAN B, et al. Research on thermal-vibration joint test for wing structure of high-speed cruise missile[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1633-1642(in Chinese).
[15] 刘浩, 李晓东, 杨文岐, 等. 高速飞行器翼面结构热振动试验的TARMA模型方法[J]. 航空学报, 2015, 36(7):2225-2235. LIU H, LI X D, YANG W Q, et al. Thermal vibration test on wing structure of high-speed flight vehicle using TARMA model method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2225-2235(in Chinese).
[16] YU K, YANG K, BAI Y. Experimental investigation on the time-varying modal parameters of a trapezoidal plate in temperature-varying environments by subspace tracking-based method[J]. Journal of Vibration and Control, 2015, 21(6):3305-3319.
[17] 吴大方, 赵寿根, 潘兵, 等. 高速飞行器中空翼结构高温热振动特性试验研究[J]. 力学学报, 2013, 45(4):598-605. WU D F, ZHAO S G, PAN B, et al. Experimental study on high temperature thermal-vibration characteristics for hollow wing structure of high-speed flight vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4):598-605(in Chinese).
[18] 吴大方, 王岳武, 蒲颖, 等. 高超声速飞行器复合材料翼面结构1100℃高温环境下的热模态试验[J]. 复合材料学报, 2015, 32(2):323-331. WU D F, WANG Y W, PU Y, et al. Thermal modal test of composite wing structure in high-temperature environments up to 1100℃ for hypersonic flight vehicles[J]. Acta Materiae Compsitae Sinica, 2015, 32(2):323-331(in Chinese).
[19] WU D F, WU S, WANG Y W, et al. High-speed and accurate non-linear calibration of temperature sensors for transient aerodynamic heating experiments[J]. Transactions of the Institute of Measurement and Control, 2014, 36(6):845-852.
[20] WU D F, WANG Y W, PAN B, et al. Experimental research on the ultimate strength of hard aluminum alloy 2017 subjected to short-time radioactive heating[J]. Materials & Design, 2012, 40:502-509.
[21] ZHENG L M, WU D F, ZHOU A F, et al. Experimental and numerical study on heat transfer characteristics of metallic honeycomb core structure in transient thermal shock environments[J]. International Journal of Thermophysics, 2014, 35(8):1557-1576.
[22] 科恩L. 时-频分析:理论与应用[M]. 白居宪, 译. 西安:西安交通大学出版社, 1998:77-93. COHEN L. Time-frequency analysis:Theory and applications[M]. BAI J X, translated. Xi'an:Xi'an Jiaotong University Press, 1998:77-93(in Chinese).
[23] 《中国航空材料手册》编辑委员会. 中国航空材料手册:第1卷[M]. 2版. 北京:中国标准出版社, 2002:817-826. The Editorial Board of China Aeronautical Material Handbook. China aeronautical material handbook:Vol.1[M]. 2nd ed. Beijing:Standard Press of China, 2002:817-826(in Chinese).
/
〈 | 〉 |