电子与控制

固定翼无人机航磁探测系统的磁补偿模型分析

  • 王婕 ,
  • 郭子祺 ,
  • 刘建英
展开
  • 中国科学院遥感与数字地球研究所 遥感科学国家重点实验室, 北京 100101
王婕,女,硕士研究生。主要研究方向:磁补偿技术。E-mail:wangjie01@radi.ac.cn;郭子祺,男,硕士,研究员。主要研究方向:地球物理勘探设备。Tel.:010-64889206,E-mail:guozq@radi.ac.cn;刘建英,女,硕士,助理研究员。主要研究方向:无人机飞行自动控制算法。E-mail:liujianying_1234@163.com

收稿日期: 2015-11-10

  修回日期: 2016-03-01

  网络出版日期: 2016-03-10

基金资助

国家深部探测技术与实验研究专项SinoProbe-09-03(201011080);国家重大科研装备研制项目“深部资源探测核心装备研发”(ZDYZ2012-1-0203)

Analysis on magnetic compensation model of fixed-wing UAV aeromagnetic detection system

  • WANG Jie ,
  • GUO Ziqi ,
  • LIU Jianying
Expand
  • State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China

Received date: 2015-11-10

  Revised date: 2016-03-01

  Online published: 2016-03-10

Supported by

Deep Exploration in China, SinoProbe-09-03 (201011080); R & D of Key Instruments and Technologies for Deep Resources Prospecting (the National R & D Projects for Key Scientific Instruments) (ZDYZ2012-1-0203)

摘要

近年来,无人机的应用日益广泛,逐渐用于航空物探。在使用固定翼无人机搭载磁力仪进行航磁测量时,必然引入飞行平台干扰,包括与机动无关的干扰和与机动有关的干扰。去除和飞机机动有关的磁干扰,即为磁补偿工作。航磁补偿的经典TOLLES-LAWSON模型将磁干扰分为剩余磁场、感应磁场和涡流磁场。对于固定翼无人机,涡流磁场可以不考虑,将剩余磁场和感应磁场合称为稳态干扰场。主要对飞机干扰的来源和性质进行分析,并在地面设计实验验证铁磁性材料的性质,以加深对磁补偿模型的假设和推导过程的理解。最后,在地面实验平台上测量了飞机磁干扰场的平面分布图,指导航空磁力仪的安装。在将TOLLES-LAWSON模型应用于固定翼无人机航磁探测系统的磁补偿工作时,无人机与有人机相比,在结构和材料方面都有较大差异,因此对模型的物理意义和假设条件的深入理解至关重要,此即本文所述工作成果的出发点。

本文引用格式

王婕 , 郭子祺 , 刘建英 . 固定翼无人机航磁探测系统的磁补偿模型分析[J]. 航空学报, 2016 , 37(11) : 3435 -3443 . DOI: 10.7527/S1000-6893.2016.0059

Abstract

In recent years, application of UAVs has been increasingly widespread, and UAVs are gradually used in aerogeophysical detection. It is inevitable to introduce magnetic interference of the airplane while detecting the geomagnetic signal on a fixed-wing UAV mounted magnetometer. Some interference is related to aircraft maneuver, while some is irrelevant. Magnetic compensation is to remove the aircraft magnetic interference related to aircraft maneuver. In the classic model, TOLLES-LAWSON's equation, the interference related to maneuver includes residual field, induced field and eddy-current field. For fixed-wing UAVs, the eddy-current field could be ignored, and the other two parts, residual field and induced field, could be referred to as the steady-state interference field. This paper analyzes the source and characteristics of aircraft magnetic interference. There are some additional proofs by ground experiments to verify the nature of ferromagnetic material. Furthermore, it would guide the aeromagnetometer installation through measuring the distribution of aircraft magnetic interference. Considering that there are obvious differences in the structure and materials between UAVs and manned aircrafts, when the classic model is applied to magnetic compensation of a fixed-wing UAV aeromagnetic detection system, it's necessary to have an in-depth understanding of the physical meaning and precondition about the model,and this is the starting point for the work in the article.

参考文献

[1] 何敬礼. 飞机磁补偿、磁补偿器的历史、现状和发展趋势[J]. 地学仪器, 1991, 3:1-7. HE J L. History, present and trends of airborne magnetic compensation and compensator[J]. Equipment for Geotechnical Engineering, 1991, 3:1-7(in Chinese).
[2] 张昌达. 重磁与时间域电磁法发展趋势研究[M]. 武汉:中国地质大学出版社, 2013:83-92. ZHANG C D. Development trend of geomagnetic, gravitation and time domain electromagnetic methods[M]. Wuhan:China University of Geosciences Press, 2013:83-92(in Chinese).
[3] 刘诗斌. 无人机磁航向测量的自动罗差补偿研究[J]. 航空学报, 2007, 28(2):411-414. LIU S B. Study on automatic magnetic deviation compensation of magnetic heading measurement for UAV[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2):411-414(in Chinese).
[4] GOPAL B V, SATMA V N, RAMBABU H V. Real time compenstion for aircraft induced noise during high resolution airborne magnetic surveys[J]. Journal of Indian Geophysical Union, 2004, 8(3):185-189.
[5] 李晓禄, 蔡文良. 运5飞机上航磁梯度测量系统的安装与补偿[J]. 物探与化探, 2006, 30(3):224-228. LI X L, CAI W L. The assembly and compensation of the aeromagnetic gradiometic system on the Y-5 aircraft[J]. Geophysical and Geochemical Exploration, 2006, 30(3):224-228(in Chinese).
[6] TOLLES W E. Magnetic field compensation system:US2706801[P]. 1955-04-19.
[7] TOLLES W E. Compensation of aircraft magnetic fields:US2692970[P]. 1954-10-26.
[8] BICKEL S H. Error analysis of an algorithm for magnetic compensation of aircraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 1979, 15(5):620-626.
[9] BICKEL S H. Small signal compensation of magnetic fields resulting from aircraft maneuvers[J]. IEEE Transactions on Aerospace and Electronic Systems, 1979, 15(4):518-525.
[10] LEACH B W. Aeromagnetic compensation as a linear regression problem[J]. Information Linkage between Applied Mathmatics and Industry II, 1980, 3:139-161.
[11] RICE J A. Automatic compensation for an airborne magnetic anomaly detector:US5182514[P]. 1993-01-26.
[12] 范成叶, 李杰, 陈文蓉, 等. 电子罗盘安装误差标定与补偿方法研究[J]. 传感技术学报, 2013, 26(5):622-626. FAN C Y, LI J, CHEN W R, et al. Reserch on calibration and compensation method on installation errors of electronic compass[J]. Chinese Journal of Sensors and Actuators, 2013, 26(5):622-626(in Chinese).
[13] 李季, 潘孟春, 罗诗途, 等. 半参数模型在载体干扰场补偿中的应用研究[J]. 仪器仪表学报, 2013, 34(9):2147-2152. LI J, PAN M C, LUO S T, et al. Study on the application of semi-parametric model in vehicle interferential magnetic field compensation[J]. Chinese Journal of Scientific Instrument, 2013, 34(9):2147-2152(in Chinese).
[14] 李季, 张琦, 潘孟春, 等. 载体干扰场补偿办法[J]. 国防科技大学学报, 2013, 35(3):7-11. LI J, ZHANG Q, PAN M C, et al. The vehicle interferential magnetic field compensation method[J]. Journal of National University of Defense Technology, 2013, 35(3):7-11(in Chinese).
[15] LELIAK P. Identification and evaluation of magnetic-field sources of magnetic airborne detector equipped aircraft[J]. IRE Transactions on Areospace and Navigational Electronics, 1961, 3:95-105.
[16] 中华人民共和国国土资源部. 航空磁测技术规范:DZ/T 0142-2010[S]. 北京:中国标准出版社, 2010:19-20. Ministry of Land and Resources of the People's Republic of China. Criterion of aeromagnetic survey:DZ/T 0142-2010[S]. Beijing:Standards Press of China, 2010:19-20(in Chinese).
[17] 刘晓杰. 航磁补偿技术研究[D]. 长春:吉林大学, 2009. LIU X J. Study on aeromagnetic compensation technique[D]. Changchun:Jilin University, 2009(in Chinese).
[18] 吴文福. 16项自动磁补偿系统[J]. 声学与电子工程, 1994, 4:14-21. WU W F. 16 factors of auto-magnetic compensation[J]. Acoustics and Electronics Engineering, 1994, 3:14-21(in Chinese).
[19] 吴文福. "海燕"机航磁仪的磁补偿方法和结果[J]. 物探与化探, 1983, 11(3):7-32. WU W F. The method and result of compensation for airborne magnetometer on Haiyan aircraft[J]. Geophysical and Geochemical Exploration, 1983, 11(3):7-32(in Chinese).
[20] 王林飞, 薛典军, 熊胜青, 等. 航磁软补偿质量评价方法及软件实现[J]. 物探与化探, 2013, 37(6):1027-1030. WANG L F, XUE D J, XIONG S Q, et al. The method of quality assessment for digital magnetic compensation and software realization[J]. Geophysical and Geochemical Exploration, 2013, 37(6):1027-1030(in Chinese).

文章导航

/